MCDB/BCHM 4312 & 5312 – Quantitative Optical Imaging

Lecture 6:

Importing and displaying images

Lecturer: Jian Wei Tay

Date: 3 September 2021

Learning objectives

- How digital images are recorded and stored
- Reading and displaying images into MATLAB
- Integer and double data types
- Making simple image measurements

How are digital images made?

Lecture 6: Importing and displaying images

What happens on a single camera pixel?

Lecture 6: Importing and displaying images

Digitization means binning intensity

Each gray level represents a range of intensities

Digital images are made up of pixels

Image data is stored as an array of numbers

Image

Data

3	40	20	3	3	3	3	3
83	26	3	70	40	3	3	3
50	3	3	66	63	79	3	3
3	3	248	99	23	36	3	3
83	3	36	66	179	255	3	3
3	3	56	162	123	89	3	3
182	3	36	73	3	3	3	3
99	3	26	3	3	3	3	3

Note: Each matrix element corresponds to one pixel of the image.

Questions?

Reading an image

- I = imread('filename')
- The function imread will read basic image file types (e.g. .tiff, .jpg, gif), returning the data in matrix I

Note: The file needs to be either in the current folder or on the MATLAB path. Otherwise, specify the full path to the image, e.g., 'C:\Downloads\image.tif' on Windows.

Also note that the single quotes ' ' are needed to specify text in MATLAB.

Practice

 Read in and display the image 16_cardiomyocytes.tif into MATLAB

Question

What is the size of the image in pixels?

A. 1280 x 900

B. 601 x 901

C.901 x 601

D. How do you get the size of an image?

Displaying an image

imshow(I)

The function imshow will display the data in matrix I as an image

Question

What is the data type of the image data?

 MATLAB lists the data type next to the size in the Workspace

Digital data is stored as bits

- Data is stored electronically as bits
- A single bit can only have one of two values:

Larger values are stored by grouping bits together

Data types

The <u>data type</u> of a variable tells the computer how to interpret the bits

Important data types to know

Image data is typically stored as <u>unsigned integers</u>

 Numbers in MATLAB are typically double-precision floating-point numbers (or <u>doubles</u> for short)

Example unsigned integer

4-bit unsigned integer

The position of the bit indicates its value as a power of 2

Unsigned integers

Can only represent whole numbers (no decimal places)

• Range of values = 0 to $2^{N} - 1$

Note: Unsigned integers can only hold positive numbers – perfect for images!

 Typically specified in multiples of 8-bits (e.g. 8-bit unsigned integer = uint8, 16-bit unsigned integers = uint16)

Question

What is the data type of the image we read in earlier?

Question

What is the range of this data type?

How the number of bits affect image quality

How the number of bits affect image quality

2 bit 4 bit 8 bit 16 bit

More accurate representation

Double-precision floating-point number formats

- Supports positive and negative numbers
- Supports decimal places
- Is 64-bits long
- Has a more complicated layout:

Note: You don't need to know exactly how doubles work, but you need to know why and when to convert unsigned integer image data into double format.

Questions?

Measuring object length

- The function imdistline will create a line on the current figure
- Display an image first using imshow, then use imdistline

Units

• imdistline provides measurements in pixels

• To convert, multiply by the <u>image pixel size</u>

Size in µm = Size in pixels x Image pixel size

$$px \times \frac{\mu m}{px}$$

Question

If the image pixel size is 0.9174 µm/px, what is the actual size of the cell shown below (106.15 px)?

Reading of pixel intensities

Using the data tip tool

By indexing from the image matrix

Question

What is the command that indexes the pixel shown below?

Image vs matrix coordinates

Image

Data

row		3	40	20	3	3	3	3	3
		83	26	3	70	40	3	3	3
		50	3	3	66	63	79	3	3
		3	3	248	99	23	36	3	3
		83	3	36	66	179	255	3	3
		3	3	56	162	123	89	3	3
		182	3	36	73	3	3	3	3
		99	3	26	3	3	3	3	3

column

Note: Remember to "swap" coordinates when indexing, i.e., I(y, x)

Unit of pixel intensities

 Actual conversion needs proper calibration of microscope and camera – most people don't do this

• Usually reported in "counts" or "arb. units"

 Most measurements are reported as <u>unitless</u> relative values (e.g., twice as bright)

Questions?

Image processing – Adjusting contrast

Read in an example image:

>> I = imread('mri.tif');
>> imshow(I)

Note: This image looks dark to the eyes because there isn't a lot of <u>contrast</u> (i.e., there isn't much difference between the light and dark regions of the image)

Displaying the colorbar

The color bar displays which pixel values are mapped to which color

>> colorbar

Note: By default, imshow scales the colorbar depending on data type. For a uint8 image, black = 0 and white = 255 (the maximum integer value of an 8-bit integer)

Automatic display scaling

imshow(I, [])

Adding an empty matrix [] as the second input argument to imshow will scale the image so white = maximum pixel value and black = minimum pixel value

Changing the displayed color scale manually

imshow(image, [low, high])

- >> imshow(I, [0, 88])
- >> colorbar

Note: The underlying data (see the index value) was not changed, just how the data was displayed.

Adding false color

 Color microscope images are actually false colored after the images are acquired

In MATLAB, you can apply a color map to a greyscale image, e.g.:

>> colormap('hot')

Hint: You can see all color maps in the documentation by typing doc colormap

Example

- >> I = imread('mri.tif')
- >> imshow(I)
- >> colormap('jet')

Saving images

- You will need to print some images to submit with your homework
- You can save images using File > Save As in the Figure Window
 - You can save these as .jpeg or .gif formats

Never use JPEG or GIFs for analysis

Original40%95%Uncompressed TIFFJPEG compressionJPEG compression535 kB19.8 kB10 kB

Never use JPEG or GIFs for analysis

Caution: These formats are great web images or documents, but the underlying data is <u>irreversibly</u> <u>changed</u> so you should never use them for real analysis. Instead, save your original images in <u>raw or</u> <u>uncompressed format</u>, such as TIFFs (which is what we will use in this course).

