
MCDB/BCHM 4312 & 5312 – Quantitative Optical Imaging

Tracking moving objects

Lecture 33:

Date: 12 November 2021

Lecturer: Jian Wei Tay

MCDB/BCHM 4312 & 5312 (Fall 2021)

Learning objectives

 Understand how nearest-neighbor tracking works
 Implement tracking using the linear assignment toolbox

Lecture 33: Tracking moving objects 2

MCDB/BCHM 4312 & 5312 (Fall 2021) 3Lecture 33: Tracking moving objects

Quantitative microscopy can be used to
answer questions such as:

• What happens to cells when treated
with X

To do this, we need to follow (or track) a
cell over time

MCDB/BCHM 4312 & 5312 (Fall 2021)

The goals of a tracking algorithm

 Identify individual objects in a movie

 Organize this information into a data structure that allows
time-series data to be analyzed

4Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Terminology

 Linking – the process of associating objects in one frame
with objects in another

 Observations – data from objects in current frame (i.e.,
from regionprops)

 Track – a collection of time-series data belonging to a
single object (e.g., position, mean intensity over time)

MCDB/BCHM 4312 & 5312 (Fall 2021)

The tracking problem

Microscope collects snapshots of the cells. How do we link these
objects between frames?

Observations

MCDB/BCHM 4312 & 5312 (Fall 2021)

Nearest neighbor algorithm

 Assumption: Cells move slowly compared to frame rate of
acquisition

 When comparing object positions between frames, a pair
of observations with the shortest distance should be
linked together

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

8Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

9Lecture 33: Tracking moving objects

Ignore cell 2 in frame 1 for now

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

10Lecture 33: Tracking moving objects

Compute distance between
cell 1 in frame 1 with every cell
in frame 2

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

11Lecture 33: Tracking moving objects

Compute distance between
cell 1 in frame 1 with every cell
in frame 2

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

12Lecture 33: Tracking moving objects

Compute distance between
cell 1 in frame 1 with every cell
in frame 2

𝑑𝑑11 = (10 − 11)2+(15 − 18)2
= 3.16

𝑑𝑑12 = (10 − 25)2+(15 − 22)2
= 16.6

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

13Lecture 33: Tracking moving objects

Compute distance between
cell 1 in frame 1 with every cell
in frame 2

𝑑𝑑11 = (10 − 11)2+(15 − 18)2
= 3.16

𝑑𝑑12 = (10 − 25)2+(15 − 22)2
= 16.6

Find the shortest distance

MCDB/BCHM 4312 & 5312 (Fall 2021)

The nearest-neighbor tracking algorithm step-by-step

14Lecture 33: Tracking moving objects

Move to the next cell (cell 2 in
frame 1)

But remove linked objects from
future consideration

In this example, cell 2 in frame
1 only has a single valid
neighbor

MCDB/BCHM 4312 & 5312 (Fall 2021)

Prevent "impossible" distances from being linked

15Lecture 33: Tracking moving objects

In this example, cell 1 in
frame 1 has drifted out
of the field of view.

However, if we carry out
the nearest-neighbor
calculation it would link
to cell 1 of Frame 2.

To avoid this, we set a
maximum value for this
linking distance.

MCDB/BCHM 4312 & 5312 (Fall 2021)

Maximum distance for linking

 The maximum distance for linking should be ~2 – 3x the
average step size of objects between frames

16Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Issue with the simple nearest-neighbor tracking
Simple nearest-neighbor makes mistakes when objects
"cross paths"

This happens (a lot)
when cells are clustered
in an image

MCDB/BCHM 4312 & 5312 (Fall 2021)

The linear assignment approach minimizes this
problem
 In the linear assignment approach, the distance of every

cell in frame 1 to every cell in frame 2 is computed in a
matrix

18Lecture 33: Tracking moving objects
Fr

am
e

1

Cell 1

Cell 2

Frame 2
Cell 1 Cell 2

3.16

1.24

16.6

14.8

MCDB/BCHM 4312 & 5312 (Fall 2021)

The linear assignment approach minimizes this
problem
 Assignment = choosing a column for each row
 Cells are assigned to minimize the total distance

19Lecture 33: Tracking moving objects
Fr

am
e

1

Cell 1

Cell 2

Frame 2
Cell 1 Cell 2

3.16

1.24

16.6

14.8

MCDB/BCHM 4312 & 5312 (Fall 2021)

Nearest-neighbor

20Lecture 33: Tracking moving objects

Frame 1

Frame 2

If we used the simple nearest neighbor algorithm, then
object 1 in frame 1 (the circle) will have distances

𝑑𝑑11 = (232 − 263)2+(143 − 327)2 = 186.6

𝑑𝑑12 = (232 − 133)2+(143 − 477)2 = 348.4

1

2

1

2

The algorithm would link object 1 (circle) in frame 1 with
object 1 (square) in frame 2.

Then object 2 in frame 1 HAS to link with object 1 in frame
2.

(232, 143)

(468, 227)

(133, 477)

(263, 327)

MCDB/BCHM 4312 & 5312 (Fall 2021)

Using the linear assignment approach

21Lecture 33: Tracking moving objects

Fr
am

e
1

Object 1

Object 2

Frame 2
Object 1 Object 2

186.6

418.0

348.4

228.4

Assign columns to rows to minimize the total distance

There are only two possibilities:
1>1, 2>2: Total cost = 186.6+418.0 = 604.6

Frame 1

Frame 2

1

2

1

2

(232, 143)

(468, 227)

(133, 477)

(263, 327)

MCDB/BCHM 4312 & 5312 (Fall 2021)

Using the linear assignment approach

22Lecture 33: Tracking moving objects

Fr
am

e
1

Object 1

Object 2

Frame 2
Object 1 Object 2

186.6

418.0

348.4

228.4

Assign columns to rows to minimize the total distance

There are only two possibilities:
1>1, 2>2: Total cost = 186.6+418.0 = 604.6
1>2, 2>1: Total cost = 228.4+348.4 = 576.8

Frame 1

Frame 2

1

2

1

2

(232, 143)

(468, 227)

(133, 477)

(263, 327)

The total cost is lower even though we assigned object 1 not to it

MCDB/BCHM 4312 & 5312 (Fall 2021)

Using the linear assignment approach

23Lecture 33: Tracking moving objects

Fr
am

e
1

Object 1

Object 2

Frame 2
Object 1 Object 2

186.6

418.0

348.4

228.4

Assign columns to rows to minimize the total distance

There are only two possibilities:
1>1, 2>2: Total cost = 186.6+418.0 = 604.6
1>2, 2>1: Total cost = 228.4+348.4 = 576.8

Frame 1

Frame 2

1

2

1

2

(232, 143)

(468, 227)

(133, 477)

(263, 327)

The total cost
is lower even
though we did
not assign
object 1 to its
nearest
neighbor

MCDB/BCHM 4312 & 5312 (Fall 2021)

Summary

 Tracking is an important image analysis problem – we
want to follow an object over time to get biologically
relevant data

 Objects are linked by distance (usually)

 The linear assignment approach links objects by
minimizing the total distance of all links

24Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

You can use other properties to link objects

 So far, we've only looked at using distances

 But you can compare sizes, shapes, etc... or even a
combination by changing the cost function

 Example: Cost = ∆distance + ∆area

25Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

General limitations

 Tracking accuracy will decrease depending on cell density
– more dense, less accurate

26Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Experimental considerations

 Initial density of cells
 Assuming cells are growing, how dense can your movie get while

still segmenting and tracking cells accurately?

 Frame rate of movie
 Movie must be recorded fast enough to meet the assumption that

cells do not move "much" for tracking
 But not so frequently that the laser causes photobleaching or

phototoxicity

27Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

MATLAB Implementation

28Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

The Linear Assignment toolbox

 This is a general purpose toolbox I wrote to implement the
linear assignment tracking algorithm
 https://github.com/Biofrontiers-ALMC/cell-tracking-toolbox/releases

29Lecture 33: Tracking moving objects

https://github.com/Biofrontiers-ALMC/cell-tracking-toolbox/releases

MCDB/BCHM 4312 & 5312 (Fall 2021)

How to use the toolbox

 First create a LAPLinker object

>> linker = LAPLinker;

30Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Linking options are in the object properties

 The only option you need to change should be
LinkScoreRange

 This option specifies the range of valid distances for
linking objects: [minDistance, maxDistance]

 By default, the maximum distance is set to 100 px but you
should change this after watching the movie

31Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

To change linking score range

 Assign the value to a 1x2 matrix:

Example:

>> linker.LinkScoreRange = [0 200];

32Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

To track data

 The object was written to use the output struct of
regionprops

 To get the code to track objects, you only need to use the
method assignToTrack. The syntax is:

linker = assignToTrack(linker, frameNumber, dataStruct)

33Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

General code structure
%Initialize the LAPLinker object
linker = LAPLinker;
linker.LinkScoreRange = [0 250];

for iT = 1:numFrames
%Read in image
I = imread('file.tif', iT);

%Make mask, watershed etc…
mask = imbinarize(I);

%Measure data
data = regionprops(mask, I, 'Centroid', 'MeanIntensity')

%Track data
linker = assignToTrack(linker, iT, data)

end

34Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Example

 Track cells in the image file nuclearMask.tif

 Using the file L33_trackingExample.m, add the three lines
of code that are missing to track the objects

 Note: This image contains just the mask of cell nuclei. For your
homework, you will need to make the masks yourself.

35Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Saving tracked data

 Once your code has finished running, you can save data
using the function save

Example: Save the linker object
>> save('trackData.mat', 'linker')

To load the data, you can double-click the .mat file to open
it in MATLAB

36

MCDB/BCHM 4312 & 5312 (Fall 2021)

Data from the toolbox

 To get data, use the method getTrack

 Example: To get data from track 1

t1 = getTrack(linker, 1)

37Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Data is stored in a multi-element struct
 Each element of the struct corresponds to an individual

object

ID: 1
MotherID: NaN

DaughterID: NaN
Frames: [1 2 3 4 5 6 7 8 9 10]

Area: [10×1 double]
Centroid: [10×2 double]

38Lecture 33: Tracking moving objects

Don't worry about these for now –
these indicate if cells divide

MCDB/BCHM 4312 & 5312 (Fall 2021)

Accessing time-series data

 Data of each cell (measured using regionprops) is stored
as a matrix/vector in each named field of the track
structure

 New time-points are added along the rows

 Example: To get the centroid position of the cell in frame 7
>> position = T1.Centroid(7, :);

39Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Accessing time-series data

 The Frames property shows the frames that this object
has been tracked in

 Note: The first frame might not be 1 (e.g., if the cell
divided, then the first element of Frames will be the first
frame the daughter cell was first detected in)

40Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Plotting time-series data

 To plot data in a vector, you can use the function plot

plot(xVector, yVector)

41Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Example

 This movie was recorded with a frame rate of 10 mins per
frame. Plot area vs time in minutes.

42Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Example

 This movie was recorded with a frame rate of 10 mins per
frame. Plot area vs time in minutes.

timeVec = (Frames) * 10;
plot(timeVec, Area)
xlabel('Time (mins)')
ylabel('Area (pixels)')

43Lecture 33: Tracking moving objects

MCDB/BCHM 4312 & 5312 (Fall 2021)

Note
 Just like last week, I've supplied an example script if you need

help getting started

 The script also includes some lines of code to make a video to
show the results of the tracking. You may need to install the
Computer Vision Toolbox (Add-Ons > Get Add-Ons and search
for this toolbox).

 You don't need to use the code – you can write your own from
scratch

44Lecture 33: Tracking moving objects

	Tracking moving objects
	Learning objectives
	Slide Number 3
	The goals of a tracking algorithm
	Terminology
	The tracking problem
	Nearest neighbor algorithm
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	The nearest-neighbor tracking algorithm step-by-step
	Prevent "impossible" distances from being linked
	Maximum distance for linking
	Issue with the simple nearest-neighbor tracking
	The linear assignment approach minimizes this problem
	The linear assignment approach minimizes this problem
	Nearest-neighbor
	Using the linear assignment approach
	Using the linear assignment approach
	Using the linear assignment approach
	Summary
	You can use other properties to link objects
	General limitations
	Experimental considerations
	MATLAB Implementation
	The Linear Assignment toolbox
	How to use the toolbox
	Linking options are in the object properties
	To change linking score range
	To track data
	General code structure
	Example
	Saving tracked data
	Data from the toolbox
	Data is stored in a multi-element struct
	Accessing time-series data
	Accessing time-series data
	Plotting time-series data
	Example
	Example
	Note	

