MCDB/BCHM 4312 \& 5312 - Quantitative Optical Imaging

Lecture 29:

Image analysis tips

Lecturer: Jian Wei Tay
Date: 2021-10-29

Some tips for image analysis

- Displaying numbers on an image to show regionprops labels
- Clarification on mask vs labels on regionprops
- Refining the mask after running watershed

regionprops

- We've seen how to use regionprops to measure object properties (e.g. size, area, etc).
- The output of regionprops is a multi-element struct, where each element corresponds to a different object:

Workspace		

Labeling an image to show the regionprops order

- The question is which element in the output of regionprops corresponds to which object in the image?
- We can plot numbers using the centroid to find out

Example

- Making a plot like this is useful when trying to identify a single object
- data(11). Area will return the area of the circle labeled 11 in the image on the left

Example

- Using the output of the watershed algorithm on circles.png

```
data = regionprops(mask, 'Centroid');
```

imshow (mask)
hold on
for $\mathrm{ii}=1$:numel(data)
text(data(ii).Centroid(1), data(ii).Centroid(2),
int2str(ii))
end
hold off

Some notes on the code

- The centroid data is returned as a 1×2 vector containing the coordinates [x, y]
- So data(ii).Centroid(1) returns the x-coordinate of object ii
- The function int $2 \operatorname{str}(M)$ rounds the elements of M to integer, then converts the number into a string

How regionprops orders objects in a mask

- A mask is a binary image (i.e., you get this by doing intensity thresholding I > 2000, or by using imbinarize)
- When a mask is used as the first input to regionprops, the algorithm looks for connected true regions in the mask
- The search pattern that regionprops uses is roughly from top left to bottom right of the image

How regionprops orders objects in a labeled image

- In a labeled image, the pixels belonging to the same objects are labeled with the same number
- You get a labeled image from the watershed algorithm

Every pixel in this circle has a value of 2

Every pixel in this circle has a value of 3

The watershed algorithm will also label the background since it thinks of it as a basin. In this example, the background has a value of 1 . Note that the background is not always 1, so you might want to plot numbers on the image to see what it ends up as.

How regionprops orders objects in a labeled image

- If given a labeled image, regionprops will return objects based on its label
- So objects labeled with 1 in the input will be in element 1 , objects labeled 2 will be in element 2 etc.

Plotting the numbers as shown earlier


```
clearvars
clc
mask = imread('circles.png');
dd = -bwdist(~mask);
dd(~mask) = -Inf;
dd = imhmin(dd, 2);
L = watershed(dd);
data = regionprops(L, 'Centroid');
imshow(label2rgb(L), [])
hold on
for ii = 1:numel(data)
    text(data(ii).Centroid(1), data(ii).Centroid(2),
int2str(ii))
end
hold off
```


Removing the background element

- In the image on the previous slide, you can see that the background is labeled as object 1
- To avoid including this in further analysis, you can use indexing to delete it, e.g.

$$
\operatorname{data}(1)=[]
$$

Another way to remove background/small objects

- Another problem is that any separated background regions also get labeled by the watershed algorithm (see regions 4, 10, 14 and 16)

Another way to remove background/small objects

- A simpler option might be to just update the original mask (see previous lecture on logical indexing)
clearvars
clc
mask = imread('circles.png');
dd = -bwdist(~mask);
dd(~mask) = -Inf;
dd $=$ imhmin(dd, 2);
L = watershed(dd);
mask(L == 0) = false;
data $=$ regionprops(mask, 'Centroid');
imshow(mask, [])
hold on
for $\mathrm{ii}=1$: numel(data)
text(data(ii).Centroid(1), data(ii).Centroid(2), int2str(ii))
end
hold off

