MCDB/BCHM 4312 & 5312 – Quantitative Optical Imaging

Lecture 18:

Intensity histograms and Otsu's method

Lecturer: Jian Wei Tay

Date: 29 September 2021

Learning objectives

- Image intensity histograms
- Automatic threshold finding with Otsu's method

For problem set 5

 To remove masks of objects that are only half in the field of view, you can use imclearborder(mask)

Please don't use imbinarize for PS 5

Last week

Image (uint16) Mask (logical) Image (uint16) Image (uin

- Manually choosing a threshold
- Using improfile to get an intensity profile

Image intensity histogram

- Shows the distribution of pixel values (intensities) in the image
- X-axis is pixel value or grayscale bin
- Y-axis is number of pixels

Image intensity histogram

Which parts of the histogram correspond to the background/cell?

Image intensity histogram

Which parts of the histogram correspond to the background/cell?

Practice

Read in the image l11_moreCardiomyocytes.tif from last week

Plot an image intensity histogram, using

imhist(I)

Note: You can also use the regular histogram function histogram(I(:))

Useful plot manipulation functions

To zoom in on the y-axis, use

ylim([min max])

Example:

ylim([0 150])

Note: You can use the function xlim to zoom in on the x-axis

Useful plot manipulation functions

To label the y-axis, use

ylabel('Text')

Example:

ylabel('Number of pixels')

Note: You can use the function xlabel to label the x-axis

Which region of the histogram is the background?

MCDB/BCHM 4312 & 5312 (Fall 2021)

Which region of the histogram is the background?

MCDB/BCHM 4312 & 5312 (Fall 2021)

Which region(s) of the histogram are the cells?

MCDB/BCHM 4312 & 5312 (Fall 2021)

Which region(s) of the histogram are the cells?

MCDB/BCHM 4312 & 5312 (Fall 2021)

Otsu's method

 Otsu's method is a popular algorithm to automatically determine a threshold value

The next few slides will walk you through the math, but you won't need to write the algorithm yourself

 Instead, think about what limitations the algorithm will have

Otsu's method

 Otsu's method uses the image histogram to <u>exhaustively</u> <u>search</u> for a threshold that maximizes a metric called the <u>between class variance</u>

Example image and histogram

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Image

Otsu's algorithm attempts to divide the image into two classes: "background" and "foreground"

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Image

Between class variance σ_B^2

$$\sigma_B^2 = W_b(t)W_f(t)\big(\mu_b(t) - \mu_f(t)\big)^2$$

 W_b and W_f are the weights given by

$$W_b(t) = \frac{N_b}{N_b + N_f}$$

Note: The subscript b stands for "background" and f stands for "foreground"

where N_b is the number of pixels in the "background" class and N_f is the number of pixels in the "foreground" class

Between class variance σ_B^2

$$\sigma_B^2 = W_b(t)W_f(t)\big(\mu_b(t) - \mu_f(t)\big)^2$$

μ_b and μ_f are the average intensities of the background and foreground classes

Example of a single calculation

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Image

Algorithm picks a threshold value and divides the pixels

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Image

Compute weights

$$W_{\{b,f\}} = \frac{N_{b,f}}{N_b + N_f}$$

 $W_b = \frac{9+6}{36} = 0.42$

$$W_f = \frac{4+5+8+4}{36} = 0.58$$

Compute mean intensities

$$\mu_{\{b,f\}} = \frac{\sum_i p_i x_i}{N_{b,f}}$$

$$\mu_b = \frac{(9 \times 0) + (6 \times 1)}{9 + 6} = 0.4$$

$$\mu_f = \frac{(4 \times 2) + (5 \times 3) + (8 \times 4) + (4 \times 4)}{4 + 5 + 8 + 4} = 3.57$$

Compute the between class variance σ_B^2

$$\sigma_B^2 = W_b W_f \big(\mu_b - \mu_f\big)^2$$

$= (0.42 \times 0.58)(0.4 - 3.57)^2$

= 2.44

Otsu's method

 Otsu's method uses the image histogram to <u>exhaustively</u> <u>search</u> for a threshold that maximizes a metric called the <u>between class variance</u>

 Exhaustive search: The algorithm does this calculation for every possible value for the threshold

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Grayscale value →	0	1	2	3	4	5
W_b	0	0.25	0.42	0.53	0.67	0.89
μ_b	0	0	0.40	0.74	1.21	1.91
W_{f}	1	0.75	0.58	0.47	0.33	0.11
μ_f	2.25	3.00	3.57	3.94	4.33	5.00
σ_b^2	0	1.69	2.44	2.56	2.17	0.95

MCDB/BCHM 4312 & 5312 (Fall 2021)

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Find grayscale value that gives the highest value of σ_B

Grayscale value →	0	1	2	3	4	5
W_b	0	0.25	0.42	0.53	0.67	0.89
μ_b	0	0	0.40	0.74	1.21	1.91
W_{f}	1	0.75	0.58	0.47	0.33	0.11
μ_f	2.25	3.00	3.57	3.94	4.33	5.00
σ_b^2	0	1.69	2.44	2.56	2.17	0.95

MCDB/BCHM 4312 & 5312 (Fall 2021)

0	1	2	1	0	0
0	3	4	4	1	0
2	4	5	5	4	0
1	4	5	5	4	1
0	3	4	4	3	1
0	2	3	3	2	0

Find grayscale value that gives the highest value of σ_B

Grayscale value →	0	1	2	3	4	5
W_b	0	0.25	0.42	0.53	0.67	0.89
μ_b	0	0	0.40	0.74	1.21	1.91
W_{f}	1	0.75	0.58	0.47	0.33	0.11
μ_f	2.25	3.00	3.57	3.94	4.33	5.00
σ_b^2	0	1.69	2.44	2.56	2.17	0.95

MCDB/BCHM 4312 & 5312 (Fall 2021)

Otsu's method returns a threshold intensity of 3

What are the limitations of Otsu's method?

 Main assumption: there are <u>two</u> <u>distinct</u> intensity classes in the image

Only background and foreground

Distinct: Intensity distributions are <u>separated by a valley</u> in the intensity histogram

What are the limitations of Otsu's method?

Global thresholding algorithm

<u>Global</u> means that it uses the intensity of the entire image

 Does not work well if image has uneven illumination

Example of uneven illumination

Questions?

Using Otsu's method in MATLAB

Make a mask using Otsu's method using the function imbinarize

mask = imbinarize(I)

Can you explain the results using the concepts we've learned today?

MCDB/BCHM 4312 & 5312 (Fall 2021)

To fill in holes in a mask

mask = imfill(mask, 'holes')

imfill defines "holes" as a region of false pixels completely surrounded by true pixels

Not a hole

Hole

MCDB/BCHM 4312 & 5312 (Fall 2021)

Questions?