
MCDB 4110/6440 – Quantitative Microscopy Lab

Introduction to deep learning
image classification

Lab 4 – 1:

Date: 8 November 2021

Lecturer: Jian Wei Tay

MCDB 4110/6440 (Fall 2021)

Introduction to Deep Learning

2

MCDB 4110/6440 (Fall 2021) 3

Artificial Intelligence
Algorithms which allow computers to mimic human behavior

Machine Learning
Algorithms which allow a computer to learn without being explicitly
programmed

Deep Learning
Algorithms which use neural networks to extract patterns

MCDB 4110/6440 (Fall 2021)

The perceptron

4

MCDB 4110/6440 (Fall 2021)

The perceptron

5

Output = ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵

MCDB 4110/6440 (Fall 2021)

Activation function

6

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Step activation function

MCDB 4110/6440 (Fall 2021)

Image classification: Is this a cat?

7

MCDB 4110/6440 (Fall 2021)

Each input = a pixel in the image

8

…

"Linearizing" or "flattening" the image = reshaping the 2D image matrix
into a (column) vector

MCDB 4110/6440 (Fall 2021)

The output should be binary (1 = yes, 0 = no)

9

…

MCDB 4110/6440 (Fall 2021)

The output should be binary (1 = yes, 0 = no)

10

…

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

MCDB 4110/6440 (Fall 2021)

Training a deep learning network
is the process of finding the weights and
bias which gives you the correct output

11

MCDB 4110/6440 (Fall 2021)

Initial weights and bias are randomized

12

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

MCDB 4110/6440 (Fall 2021)

Initial weights and bias are randomized

13

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

MCDB 4110/6440 (Fall 2021)

First training picture

14

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Expected output = 1

Wrong: Change
weights and bias

0

MCDB 4110/6440 (Fall 2021)

First training picture

15

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Expected output = 1

Wrong: Change
weights and bias

0

MCDB 4110/6440 (Fall 2021)

Second training picture

16

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Expected output = 0

Wrong: Change
weights and bias

1

MCDB 4110/6440 (Fall 2021)

Second training picture

17

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Expected output = 0

Wrong: Change
weights and bias

1

MCDB 4110/6440 (Fall 2021)

Third training picture

18

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

Expected output = 1

Correct: Do nothing1

MCDB 4110/6440 (Fall 2021)

A typical training cycle

Input a training
image

Compare the
output to the

expected label

If wrong, update
weights and

bias by a small
amount

19

Repeat for entire set of training images
= 1 epoch

Training runs for a
set number of epochs
decided by the user

MCDB 4110/6440 (Fall 2021)

The Stochastic Gradient Descent with
Momentum (SGDM) training algorithm

20

MCDB 4110/6440 (Fall 2021)

The goal of any training algorithm is to
minimize error (aka loss/cost)
Error = | Output value – Expected value |2

21

MCDB 4110/6440 (Fall 2021)

SGDM computes the derivative of the error, then
changes the weights based on this slope

22

Positive slope Negative slope

MCDB 4110/6440 (Fall 2021)

Momentum helps to avoid being stuck in a local
minimum

23

Momentum

MCDB 4110/6440 (Fall 2021)

Typically want to reduce the size of learning steps as
time goes on to help the network settle at the minima

24

MCDB 4110/6440 (Fall 2021)

Parameters for SGDM

 Learning Rate – How big a step to change the weights
when output is wrong

 Learning Rate Drop Factor – Factor to reduce learning
rate after each epoch

25

MCDB 4110/6440 (Fall 2021)

Understanding how the perceptron works after
training

26

MCDB 4110/6440 (Fall 2021) 27

0.1

0.2

0.1

0.1

0.1

0.1

0.1

…

Weights

MCDB 4110/6440 (Fall 2021) 28

0.1

0.2

0.1

0.1

0.1

0.1

0.1

…

Weights

The weights indicate how important an input is in
getting the classification correct

MCDB 4110/6440 (Fall 2021) 29

0.1 0.2 0.1 0.1 0.1 0.1 0.1

Reshape weights into a matrix for visualization

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 1 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Weights are higher at the
center of the matrix = the
center of the image is
more important

MCDB 4110/6440 (Fall 2021) 30

0.1 0.2 0.1 0.1 0.1 0.1 0.1

The weights indicate how important an input is in
getting the classification correct

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 1 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Weights are higher at the
center of the matrix = the
center of the image is
more important

MCDB 4110/6440 (Fall 2021) 31

0.1 0.2 0.1 0.1 0.1 0.1 0.1

Final accuracy is dependent on training images

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Training images are
centered on the object
we are trying to classify

This perceptron will work
well for images that are
centered on the object1

Will likely
misclassify this
image

MCDB 4110/6440 (Fall 2021)

The bias indicates how likely the perceptron
will classify the object as a cat

 If B is high, the perceptron will be less likely to classify an
image as a cat because the summation part needs to
have a higher value to meet the threshold

32

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise

MCDB 4110/6440 (Fall 2021)

The bias is influenced by the ratio of cat vs
non-cat images in the training set

33

More cats in training images will likely result in a lower bias

Why? Because the perceptron will learn that the image it's
shown is more likely to be a cat then not

Need to have balanced classes when training

MCDB 4110/6440 (Fall 2021)

From perceptron to network

34

MCDB 4110/6440 (Fall 2021) 35

0.1 0.2 0.1 0.1 0.1 0.1 0.1

Final accuracy is dependent on training images

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Training images are
centered on the object
we are trying to classify

This perceptron will work
well for images that are
centered on the object1

MCDB 4110/6440 (Fall 2021)

How do we improve the perceptron model to
handle other images?

36

MCDB 4110/6440 (Fall 2021)

Neural networks have connected layers of perceptrons

37

MCDB 4110/6440 (Fall 2021)

Neural networks have connected layers of perceptrons

38

MCDB 4110/6440 (Fall 2021)

Each layer "mixes" pixels/features from the previous layer

39

Blue lines indicate
strongest weights

MCDB 4110/6440 (Fall 2021)

The output layer allows different classifications

40

"Cat"

"Dog"

MCDB 4110/6440 (Fall 2021)

Convolutional Neural Networks

41

MCDB 4110/6440 (Fall 2021)

In a fully connected layer, every input is connected to
the perceptrons in the next layer

42

MCDB 4110/6440 (Fall 2021)

In a convolutional layer, only a patch of an
image is used as input

43

Each perceptron is called a "filter"

MCDB 4110/6440 (Fall 2021)

The filter is moved over the entire image and
the output is stored in a matrix

44

5 2-1

The process of sliding the filter over the entire
image is called a convolution operation

This matrix is called a
"feature map" or "activation
map"

MCDB 4110/6440 (Fall 2021)

Pooling is used to combine pixels in the feature
maps (e.g., combine 2x2 pixels into 1)

45

MCDB 4110/6440 (Fall 2021)

Example: Edge detection (related method)

46

MCDB 4110/6440 (Fall 2021)

Fully-connected networks vs Convolutional networks

47

0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

1

FCNs detect features based on
position in an image

By sliding a filter around, a
convolutional network detects
features anywhere in an image

MCDB 4110/6440 (Fall 2021)

Convolutional neural networks have several layers of
convolutional layers

48

MCDB 4110/6440 (Fall 2021)

Each convolutional layer combines features from the previous

49

Layer 1
Detect lines and edges

Layer 2
Combine lines and

edges to detect eyes,
ears, noses

Layer 3
Combine eyes, ears,
noses to detect faces

MCDB 4110/6440 (Fall 2021)

Convolutional layer parameters

 Filter size – specified as [M, N] (usually square). Number
of rows and columns for each filter

 Stride – step size for traversing the input (usually 1, 1)

50

MCDB 4110/6440 (Fall 2021)

Stride of [1, 1]

51

MCDB 4110/6440 (Fall 2021)

Stride if [2, 2]

52

MCDB 4110/6440 (Fall 2021)

Reference
 MIT 6.S191: Convolutional Neural Networks (Alex Amini)

[Youtube]

53

https://www.youtube.com/watch?v=AjtX1N_VT9E&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=3

MCDB 4110/6440 (Fall 2021)

Training a convolutional network in MATLAB to
classify images of food

54

MCDB 4110/6440 (Fall 2021)

What we'll do for this lab

 Load image data into MATLAB using an imageDatastore
 Use the DeepNetworkDesigner to build a simple network
 Train the network
 Test that it works

55

MCDB 4110/6440 (Fall 2021)

For this example, delete *_salad and sashimi
folders to reduce number of classes to train

56

MCDB 4110/6440 (Fall 2021)

Download the training data
fprintf("Downloading Example Food Image data set (77
MB)... ")
filename =
matlab.internal.examples.downloadSupportFile('nnet',
...

'data/ExampleFoodImageDataset.zip');
fprintf("Done.\n")

filepath = fileparts(filename);
dataFolder =
fullfile(filepath,'ExampleFoodImageDataset');
unzip(filename,dataFolder);

57

MCDB 4110/6440 (Fall 2021)

Load the training data

 We are going to use a dataset of images of food

 MATLAB has done all the hard work of preparing the data
for us

58

MCDB 4110/6440 (Fall 2021)

Folder structure of image data
 The folder ExampleFoodImageDataset (created when you unzipped

the files) contains 9 folders
 The folders are named with a label that describes each image within it

59

MCDB 4110/6440 (Fall 2021)

Load the images into an imageDatastore

imds = imageDatastore(dataFolder, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');

60

MCDB 4110/6440 (Fall 2021)

The imageDatastore

 Last week, we talked about how we cannot simply load an
entire dataset into memory due to RAM

 The imageDatastore object will index all the images in a
directory and load them into memory when they are
needed

61

MCDB 4110/6440 (Fall 2021)

Display some images from the datastore

figure;
perm = randperm(976,20);
for i = 1:20

subplot(4,5,i);
imshow(imds.Files{perm(i)});

end

62

MCDB 4110/6440 (Fall 2021)

Open the Deep Network Designer

>> deepNetworkDesigner

When the designer app opens, select Blank Network

63

MCDB 4110/6440 (Fall 2021)

Create this network by
dragging layers from the
Layer Library panel

Connect them by dragging
the output of a layer to the
input of the next

Note: MATLAB resizes
images to match the input
size (227x227 pixels)

64

Set InputSize 227, 227, 3

Set OutputSize 9

MCDB 4110/6440 (Fall 2021)

Import the training images to the designer
 Click on the Data tab
 Click on Import Data > Import Image Data

65

MCDB 4110/6440 (Fall 2021)

Set up the training parameters
 Click on the Training tab, then click Training Options

 Set the following parameters:
 InitialLearnRate = 0.001
 MaxEpochs = 5;
 MiniBatchSize = 16

 Click Train

 When training is complete, select Export Trained Network and
Results

66

MCDB 4110/6440 (Fall 2021)

Testing the trained network

67

MCDB 4110/6440 (Fall 2021) 68

MCDB 4110/6440 (Fall 2021)

Classifying individual images

testImage = imread(imds.Files{1});
classify(trainedNetwork_1, testImage)

testImage = imread(imds.Files{540});
classify(trainedNetwork_1, testImage)

69

MCDB 4110/6440 (Fall 2021)

Randomly select and display images
%Select 16 random images
imgIdxs = randperm(978, 16);

figure;
for ii = 1:numel(imgIdxs)

I = imread(imds.Files{imgIdxs(ii)});

%Resize I to match the input layer size
Ires = imresize(I, [227 227]);

classification = classify(trainedNetwork_1, Ires);

subplot(4, 4, ii);
imshow(I)
title(classification, 'Interpreter', 'none')

end

70

MCDB 4110/6440 (Fall 2021) 71

MCDB 4110/6440 (Fall 2021)

Saving the network

 To save the trained network, you can simply save the
variable in the Workspace

>> save('savedNetwork.mat', ...
'trainedNetwork_1', 'trainInfoStruct_1')

72

MCDB 4110/6440 (Fall 2021)

Speeding up training with transfer learning

73

MCDB 4110/6440 (Fall 2021)

Transfer learning
uses a network that was previously trained

and retrains it on a different dataset (as
opposed to starting with random weights)

74

MCDB/BCHM 4312 & 5312 (Fall 2021) 75

MCDB 4110/6440 (Fall 2021)

Load a pretrained network

 In the Deep Network Designer, click on New

 Install AlexNet (if using for the first time)

 Close the dialog box and click on New again to refresh
the list

 Select AlexNet

76

MCDB 4110/6440 (Fall 2021)

Make the following modifications

 Replace (delete and drag new copies) the last three
layers:
 Fully Connected Layer,
 Softmax
 Classification layer

 Set the OutputSize of the fully connected layer to 9

 Train the network using the same options as before
77

MCDB 4110/6440 (Fall 2021) 78

MCDB 4110/6440 (Fall 2021) 79

pizza hamburger pizza hamburger

pizza pizza
hamburger

pizza

pizza french_fries
pizza pizza

hamburger french_fries hamburger pizza

MCDB 4110/6440 (Fall 2021)

For this lab (Part 1)
 Train a network to classify images of cells:
 BPAE (Bovine Pulmonary Arterial Endothelial) cells – single

mammalian cells
 Mouse kidney - tissue
 E. coli – single bacteria cells

 Write code to prepare your own training data from these images

 More details in handout

80

	Introduction to deep learning image classification
	Introduction to Deep Learning
	Slide Number 3
	The perceptron
	The perceptron
	Activation function
	Image classification: Is this a cat?
	Each input = a pixel in the image
	The output should be binary (1 = yes, 0 = no)
	The output should be binary (1 = yes, 0 = no)
	Training a deep learning network
	Initial weights and bias are randomized
	Initial weights and bias are randomized
	First training picture
	First training picture
	Second training picture
	Second training picture
	Third training picture
	A typical training cycle
	The Stochastic Gradient Descent with Momentum (SGDM) training algorithm
	The goal of any training algorithm is to minimize error (aka loss/cost)
	SGDM computes the derivative of the error, then changes the weights based on this slope
	Momentum helps to avoid being stuck in a local minimum
	Typically want to reduce the size of learning steps as time goes on to help the network settle at the minima
	Parameters for SGDM
	Understanding how the perceptron works after training
	Slide Number 27
	The weights indicate how important an input is in getting the classification correct
	Reshape weights into a matrix for visualization
	The weights indicate how important an input is in getting the classification correct
	Final accuracy is dependent on training images
	The bias indicates how likely the perceptron will classify the object as a cat
	The bias is influenced by the ratio of cat vs non-cat images in the training set
	From perceptron to network
	Final accuracy is dependent on training images
	How do we improve the perceptron model to handle other images?
	Neural networks have connected layers of perceptrons
	Neural networks have connected layers of perceptrons
	Each layer "mixes" pixels/features from the previous layer
	The output layer allows different classifications
	Convolutional Neural Networks
	In a fully connected layer, every input is connected to the perceptrons in the next layer
	In a convolutional layer, only a patch of an image is used as input
	The filter is moved over the entire image and the output is stored in a matrix
	Pooling is used to combine pixels in the feature maps (e.g., combine 2x2 pixels into 1)
	Example: Edge detection (related method)
	Fully-connected networks vs Convolutional networks
	Convolutional neural networks have several layers of convolutional layers
	Each convolutional layer combines features from the previous
	Convolutional layer parameters
	Stride of [1, 1]
	Stride if [2, 2]
	Reference
	Training a convolutional network in MATLAB to classify images of food
	What we'll do for this lab
	For this example, delete *_salad and sashimi folders to reduce number of classes to train
	Download the training data
	Load the training data
	Folder structure of image data
	Load the images into an imageDatastore
	The imageDatastore
	Display some images from the datastore
	Open the Deep Network Designer
	Create this network by �dragging layers from the Layer Library panel��Connect them by dragging the output of a layer to the input of the next��Note: MATLAB resizes images to match the input size (227x227 pixels)
	Import the training images to the designer
	Set up the training parameters
	Testing the trained network
	Slide Number 68
	Classifying individual images
	Randomly select and display images
	Slide Number 71
	Saving the network
	Speeding up training with transfer learning
	Transfer learning
	Slide Number 75
	Load a pretrained network
	Make the following modifications
	Slide Number 78
	Slide Number 79
	For this lab (Part 1)

