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Introduction to Deep Learning
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Artificial Intelligence
Algorithms which allow computers to mimic human behavior

-

Deep Learning
Algorithms which use neural networks to extract patterns
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The perceptron

Inputs Weights Bias Output
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The perceptron

Inputs Weights Bias Output

Output = Y& w;I; — B
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.
Activation function

Activation

Inputs Weights Bias
Pu 9 I Function

Output Step activation function

Output:
=1if X tw;l; — B > 0

= 0 otherwise
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N
Image classification: Is this a cat?

Activation

Inputs Weights Bias
P J Function

Output
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N
Each input = a pixel in the image

Activation

Inputs Weights Bias
P J Function

Output

"Linearizing" or "flattening" the image = reshaping the 2D image matrix
into a (column) vector
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N
The output should be binary (1 = yes, 0 = no)

Activation

Inputs Weights Bias
P J Function

Output
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N
The output should be binary (1 = yes, 0 = no)

Activation

Inputs Weights Bias
P J Function

Output

=1if X5 w;l; — B > 0

= 0 otherwise
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Training a deep learning network

Is the process of finding the weights and
bias which gives you the correct output
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Initial weights and bias are randomized

Activation

I ts Weight Bi Output
nputs Weights las "0 Lo, Outpu
Wi
w
D (0)-@-O
() @
Wy

Output:
=1if Y5 w;l; —B >0

= 0 otherwise
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Initial weights and bias are randomized

: : Activation
I ts Weight B Output
nputs eights ias Function utpu
0.85
0.3
() © O
0.25

Output:
=1ifY5tw;; —B>0

= 0 otherwise

MCDB 4110/6440 (Fall 2021) 13




N
First training picture

Activation

Inputs Weights Bias
P 9 Function

Output

Expected output = 1

) O
@/ 0 Wrong: Change

weights and bias

Output:
=1ifY5tw;; —B>0

= 0 otherwise
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N
First training picture

Activation

Inputs Weights Bias
P J Function

Output

Expected output = 1

) O
@/ 0 Wrong: Change

weights and bias

Output:
=1ifY5tw;; —B>0

= 0 otherwise
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N
Second training picture

Activation

Inputs Weights Bias
P J Function

Output

Expected output = 0

) O
@/ 1 Wrong: Change

weights and bias

Output:
=1ifY5tw;; —B>0

= 0 otherwise
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N
Second training picture

Activation

Inputs Weights Bias
P J Function

Output

Expected output = 0

) O
@/ 1 Wrong: Change

weights and bias

Output:
=1ifY5tw;; —B>0

= 0 otherwise
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Third training picture

: : Activation
Inputs Weights B tput
nputs eights ias Function Outpu
0.2
Expected output = 1
® 2 (e o
& Correct: Do nothing

Output:
=1ifY5tw;; —B>0

= 0 otherwise
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N
A typical training cycle

Repeat for entire set of training images
=1 epoch

Training runs for a
set number of epochs
decided by the user

If wrong, update
weights and

bias by a small
amount
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The Stochastic Gradient Descent with
Momentum (SGDM) training algorithm
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The goal of any training algorithm is to
minimize error (aka loss/cost)

Error = | Output value — Expected value |?
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SGDM computes the derivative of the error, then
changes the weights based on this slope

r

| Initial weight
/
Lmsff.?mt 1L‘-_' My
e L :
Positive slope | )\ / Negative slope

| Gradient ' w7 Minimum Cost
a ¢ aL
aw aw ="
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Momentum helps to avoid being stuck in a local
minimum

LOsS

. learningsteps
W \
| 4

Momentum /
local \

minimum

~——global

Weight
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Typically want to reduce the size of learning steps as
time goes on to help the network settle at the minima

LOsS

b
“. learningsteps

local

minimum

~——global

Weight
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.
Parameters for SGDM

* | earning Rate — How big a step to change the weights
when output is wrong

» Learning Rate Drop Factor — Factor to reduce learning
rate after each epoch
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Understanding how the perceptron works after
training
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Weights | o
, : Activation
0.2 Inputs Weights Bias Function Output
1 @ (&)
Wi
0.1
W AN
@ D O
e &/
0.1
0.1
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The weights indicate how important an input is in

getting the classification correct

Weights
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0.1
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Inputs Weights

Activation

Bias Function Output
@O
o
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N
Reshape weights into a matrix for visualization

0.1 0.2 | 0.1 0.1 0.1 0.1 0.1

0.1 1 3 5 2 1 0.3

sl 2l 112138l 210 Weights are higher at the
center of the matrix = the
center of the image is

02 | 3 | 8 | 7 3| 1|0 more important

0.1 1 6 5 3 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 | 0.1 0.2 | 0.1 0.3 | 0.1
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The weights indicate how important an input is in
getting the classification correct

0.1 0.2 | 0.1 0.1 0.1 0.1 0.1

0.1 1 3 5 2 1 0.3

sl 2l 112138l 210 Weights are higher at the
center of the matrix = the
center of the image is

02 | 3 | 8 | 7 3| 1|0 more important

0.1 1 6 5 3 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 | 0.1 0.2 | 0.1 0.3 | 0.1
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N
Final accuracy is dependent on training images

Training images are
centered on the object
04| 1| 3|5 |2]1]o0s we are trying to classify

0.1 0.2 | 0.1 0.1 0.1 0.1 0.1

0.3 2 1 2 8 2 0.3 . .
This perceptron will work

Gt s 3]y well for images that are
02| 3|8 | 7| 3] 1]o0a centered on the object

0.1 2 1 2 3 2 0.2

04 [ 02|01 |02]01]03] o1 Will likely
misclassify this
image
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The bias indicates how likely the perceptron
will classify the object as a cat

Output:
=1if Y5 w;l; — B > 0

= 0 otherwise

= If B is high, the perceptron will be less likely to classify an
Image as a cat because the summation part needs to
have a higher value to meet the threshold
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The bias is influenced by the ratio of cat vs
non-cat images In the training set
More cats in training images will likely result in a lower bias

Why? Because the perceptron will learn that the image it's
shown is more likely to be a cat then not

Need to have balanced classes when training
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From perceptron to network
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N
Final accuracy is dependent on training images

Training images are
centered on the object
04| 1| 3|5 |2]1]o0s we are trying to classify

0.1 0.2 | 0.1 0.1 0.1 0.1 0.1

0.3 2 1 2 8 2 0.3 . .
This perceptron will work

Gt s 3]y well for images that are
02| 3|8 | 7| 3] 1]o0a centered on the object

0.1 2 1 2 3 2 0.2

0.1 0.2 | 0.1 0.2 | 0.1 0.3 | 0.1
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How do we improve the perceptron model to
handle other images?
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Neural networks have connected layers of perceptrons
~ Fully-connected
Inputs Weights Bias ACt'Vahﬂ‘Hd@UtkﬂﬂerS

Functi
ONERC
W, Output layer
(— ‘On ©
P — —(\\ )
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Neural networks have connected layers of perceptrons

Fully-connected
"hidden" layers

Input layer

@ Q Output layer
e @ -
@ O

O
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Each layer "mixes" pixels/features from the previous layer

Fully-connected
"hidden" layers

Input layer '

Blue lines indicate
strongest weights

Output layer
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The output layer allows different classifications

Fully-connected
"hidden" layers

Input layer ‘

Output layer
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Convolutional Neural Networks
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In a fully connected layer, every input is connected to
the perceptrons in the next layer

Fully-connected
"hidden" layers

Input layer ‘

Output layer

MCDB 4110/6440 (Fall 2021) 42




In a convolutional layer, only a patch of an
image is used as input

Activation

Inputs Weight Bi
nputs Weights las o ion

Output

Each perceptron is called a "filter"
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The filter is moved over the entire image and
the output is stored in a matrix

Activation -1 5 2

Inputs Weight Bi tput
nputs Weights las o ion Outpu

This matrix is called a
"feature map" or "activation
map"

The process of sliding the filter over the entire
image is called a convolution operation
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Pooling is used to combine pixels in the feature
maps (e.g., combine 2x2 pixels into 1)

pooled Fully-connected 1

pooled  feature maps  oatyre maps

feature maps gl
feature maps = |

ply|x)

|

|
-
/)

XXX XI1X)

Qutputs

layer 1 layer 2
+ RelLU + RelLU
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Example: Edge detection (related method)

Kernel

Edge detection /
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-
Fully-connected networks vs Convolutional networks

FCNs detect features based on
position in an image

0.1 0.2 | 0.1 0.1 0.1 0.1

0.1

0.1 1 3 5 2 1 0.3
0.3 2 1 2 8 2 0.3
0.1 1 6 5 3 3 0.1
0.2 3 8 7 3 1 0.1
0.1 2 1 2 3 2 0.2

0.1 0.2 | 0.1 0.2 | 0.1 0.3

0.1

By sliding a filter around, a
convolutional network detects
features anywhere in an image

Kernel

Edge detection

1 -1 -1
¥ | =1 8 -1 =
1 -1 -1

MCDB 4110/6440 (Fall 2021)



Convolutional neural networks have several layers of
convolutional layers

— CAR
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Each convolutional layer combines features from the previous

~ ' ol Vsl DL B
%r ;,r.!i : I E = |5

F 0% Rl 1L
AL ZNN _ BatBed=yw
-l Ll TembhOl

Detect lines and edges Combine lines and
edges to detect eyes,

ears, noses

MCDB 4110/6440 (Fall 2021)

220 5w

vaGhenn
nehahs

Layer 3
Combine eyes, ears,
noses to detect faces
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N
Convolutional layer parameters

» Filter size — specified as [M, N] (usually square). Number
of rows and columns for each filter

» Stride — step size for traversing the input (usually 1, 1)
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Stride of [1, 1]
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Stride if [2, 2]
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o
Reference

* MIT 6.5191: Convolutional Neural Networks (Alex Amini)
[Youtube]
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https://www.youtube.com/watch?v=AjtX1N_VT9E&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=3

Training a convolutional network in MATLAB to
classify images of food
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What we'll do for this lab

* |_oad image data into MATLAB using an imageDatastore

» Use the DeepNetworkDesigner to build a simple network
* Train the network

= Test that it works

MCDB 4110/6440 (Fall 2021)
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For this example, delete * salad and sashimi
folders to reduce number of classes to train
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N
Download the training data

fprintf("Downloading Example Food Image data set (77
MB)... ")

filename =
matlab.internal.examples.downloadSupportFile( 'nnet’,

‘data/ExampleFoodImageDataset.zip');
fprintf("Done.\n")

filepath = fileparts(filename);

dataFolder =
fullfile(filepath, 'ExampleFoodImageDataset');

unzip(filename,dataFolder);
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N
Load the training data

* We are going to use a dataset of images of food

= MATLAB has done all the hard work of preparing the data
for us
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N
Folder structure of image data

» The folder ExampleFoodImageDataset (created when you unzipped
the files) contains 9 folders

» The folders are named with a label that describes each image within it

Mame

B ceesar_salad q 4
o -
. caprese_salad s =
B cropburger?.jp

cropburger.jpg

. french_fries

. greek_salad
l hamburger

. h':'t—'j':'g cropburgerd.jpg cropburger10,jpe

B o .
. sashimi : B AN
. sushi -/ w [ —

3 g .
cropburger13jpg  cropburger1fjpg  cropburgerl7.jpg
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Load the images into an imageDatastore

imds = imageDatastore(dataFolder,
'IncludeSubfolders’, true,
‘LabelSource’, 'foldernames"');
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N
The imageDatastore

= Last week, we talked about how we cannot simply load an
entire dataset into memory due to RAM

* The imageDatastore object will index all the images in a
directory and load them into memory when they are
needed
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Display some images from the datastore

figure;
perm = randperm(976,20);
for 1 = 1:20
subplot(4,5,1);
imshow(imds.Files{perm(i)});
end
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N
Open the Deep Network Designer

>> deepNetworkDesigner

When the designer app opens, select Blank Network

-} Deep MNetwork Designer Start Page

MATLAB Deep Network Designer

| Compare Pretrained Networks Transfer Learning

v Genera

B
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B ri,. | Set InputSize 227,227, 3

Create this network by
dragging layers from the
] bectnom Layer Library panel

Connect them by dragging
= the output of a layer to the
input of the next

Z yeoneces | Set OutputSize 9 Note: MATLAB resizes
iImages to match the input
1], el size (227x227 pixels)

classoutput
B classificationlLa. ..
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N
Import the training images to the designer

= Click on the Data tab
» Click on Import Data > Import Image Data

TRAINING VALIDATION

Import image classification data for training. Import validation data to help prevent overfitting.
Data source: | ImageDatastore in workspace » Data source: | Split from training data A

imds - 873 images v Refresh Specify amount of training data to use for validation.
AUGMENTATION OPTIONS Percentage: 205 [+| Randomize
Random reflection axis e Y-

Random rotation (degrees) Min: 02+ Max i) ==

Random rescaling Min: 1= Max 1=
Random horizontal translation (pixels) Min: 0 Max 0=
Random vertical translation (pixels)  Min: 0 Max ==

Images will be resized during training to match network input size Impart Cancel
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N
Set up the training parameters

= Click on the Training tab, then click Training Options

= Set the following parameters:
= |nitialLearnRate = 0.001
= MaxEpochs = 5;
= MiniBatchSize = 16

= Click Train

= When training is complete, select Export Trained Network and
Results
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Testing the trained network
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Training Progress (09-Nov-2021 16:18:14) Results
Validation accuracy: 30.14%
Training finished: Reached final iteration
100 -
Training Time
el Start time: 09-Nov-2021 16:13:14
20 Elapsed time: 29sec
70k Training Cycle
Epoch: 50f5
£ 60 lieration: 250725
g o Iterations per epoch: 5
§ Maximum iterations: 25
40 - -
Validation
30 Frequency: 50 iterations
20 Other Information
Hardware resource: Single GPU
or p - _ . Learning rate schedule: Constant
Epoch 2 Epoch 3 Epoch 4 Leami ;
0 1 1 1 1 earning rate: 0.01
0 5 10 15 20 25
lteration Learn more
2 / \
e _ /7
0 .I'I_H = e
| e " Accuracy
” ar I." "«_\ =T s ——— Training (smoothed)
o ) \ ——
o | it .
} 6 / \\ = Training
! il
4l ."I W ] T ) TT=a - — -@— - Validation
/ — ~ -
2F ! - —= ={@) Fin Loss
1 | Epoch 2 ‘ 3 Epoch 4 | | Training (smoothed)
0 in
0 5 10 15 20 25 Training
lteration — —@— - Validation
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N
Classifying individual images

testImage = imread(imds.Files{1});
classify(trainedNetwork 1, testImage)

testImage = imread(imds.Files{540});
classify(trainedNetwork 1, testImage)
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Randomly select and display images

%Select 16 random images
imgIdxs = randperm(978, 16);

figure;
for ii = 1:numel(imgIdxs)

I = imread(imds.Files{imgIdxs(ii)});

%Resize I to match the input layer size
Ires = imresize(I, [227 227]);

classification = classify(trainedNetwork_1, Ires);
subplot(4, 4, ii);
imshow(I)

title(classification, 'Interpreter', 'none')

end
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Saving the network

» To save the trained network, you can simply save the
variable in the Workspace

>> save( 'savedNetwork.mat',
'trainedNetwork 1', 'trainInfoStruct 1')
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Speeding up training with transfer learning
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Transfer learning

uses a network that was previously trained
and retrains it on a different dataset (as
opposed to starting with random weights)
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Load pretrained network

Early layers that
learned basic features
(edges, blobs...)

Last layers that
learned more specific
features (pizza, fries)

Replace final layers

New layers that will learn
features in new data set

Train the network

Training
images

Training options

MCDB/BCHM 4312 & 5312 (Fall 2021)
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N
Load a pretrained network

* |n the Deep Network Designer, click on New
» Install AlexNet (if using for the first time)

» Close the dialog box and click on New again to refresh
the list

= Select AlexNet
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N
Make the following modifications

» Replace (delete and drag new copies) the last three
layers:

» Fully Connected Layer,
= Softmax
= Classification layer

= Set the OutputSize of the fully connected layer to 9

* Train the network using the same options as before
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Accuracy (%)

Training Progress (09-Nov-2021 19:15:42)
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lteration

Epoch 1 Epechz Ep:?wi Epoch{ Epoch 5

0

0 50 100 150 200

lteration
s -“'IF"' |
/ [ Sy

- i ‘_L.\_\___A_:f.__ - — '3\__ ______ > —— . .
Epoch 1 Epoch 2 PpoCl 3 N/ Epachd A~ A ENOCH S D
0 50 100 150 200

Results
Validation accuracy:

Training finished:

Training Time
Start time:

Elapsed time:

Training Cycle
Epoch:

[teration:

lterations per epoch:

Maximum iterations:

Validation

Frequency:

Other Information
Hardware resource:
Learning rate scheduls:

Learning rate:

Leamn more

83.43%

Reached final iteration

09-Mov-2021 19:15:42

b5 sec

5 of 5
215 of 215
43
215

50 iterations

Single GPU
Constant
0.001
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hamburger hamurgr

pizza

french_fries

hamburger hamburger pizza
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For this lab (Part 1)

* Train a network to classify images of cells:

= BPAE (Bovine Pulmonary Arterial Endothelial) cells — single
mammalian cells

= Mouse kidney - tissue
= E. coli — single bacteria cells

= Write code to prepare your own training data from these images

= More details in handout
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