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Introduction to Deep Learning
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Artificial Intelligence
Algorithms which allow computers to mimic human behavior

Machine Learning
Algorithms which allow a computer to learn without being explicitly 
programmed

Deep Learning
Algorithms which use neural networks to extract patterns
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The perceptron
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The perceptron
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Output = ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵
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Activation function
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Step activation function
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Image classification: Is this a cat?
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Each input = a pixel in the image
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…

"Linearizing" or "flattening" the image = reshaping the 2D image matrix 
into a (column) vector
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The output should be binary (1 = yes, 0 = no)
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…
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The output should be binary (1 = yes, 0 = no)
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…

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 
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Training a deep learning network
is the process of finding the weights and 
bias which gives you the correct output
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Initial weights and bias are randomized
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 
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Initial weights and bias are randomized
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 



MCDB 4110/6440 (Fall 2021)

First training picture
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Expected output = 1

Wrong: Change 
weights and bias

0
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First training picture
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Expected output = 1

Wrong: Change 
weights and bias

0
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Second training picture
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Expected output = 0

Wrong: Change 
weights and bias

1
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Second training picture
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Expected output = 0

Wrong: Change 
weights and bias

1
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Third training picture
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Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 

Expected output = 1

Correct: Do nothing1
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A typical training cycle

Input a training 
image

Compare the 
output to the 

expected label

If wrong, update 
weights and 

bias by a small 
amount
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Repeat for entire set of training images
= 1 epoch

Training runs for a 
set number of epochs 
decided by the user
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The Stochastic Gradient Descent with 
Momentum (SGDM) training algorithm
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The goal of any training algorithm is to 
minimize error (aka loss/cost)
Error = | Output value – Expected value |2
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SGDM computes the derivative of the error, then 
changes the weights based on this slope
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Positive slope Negative slope
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Momentum helps to avoid being stuck in a local 
minimum 
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Momentum
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Typically want to reduce the size of learning steps as 
time goes on to help the network settle at the minima
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Parameters for SGDM

 Learning Rate – How big a step to change the weights 
when output is wrong

 Learning Rate Drop Factor – Factor to reduce learning 
rate after each epoch

25
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Understanding how the perceptron works after 
training
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0.1

0.2

0.1

0.1

0.1

0.1

0.1

…

Weights
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0.1

0.2

0.1

0.1

0.1

0.1

0.1

…

Weights

The weights indicate how important an input is in 
getting the classification correct
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0.1 0.2 0.1 0.1 0.1 0.1 0.1

Reshape weights into a matrix for visualization

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 1 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Weights are higher at the 
center of the matrix = the 
center of the image is 
more important
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0.1 0.2 0.1 0.1 0.1 0.1 0.1

The weights indicate how important an input is in 
getting the classification correct

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 1 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Weights are higher at the 
center of the matrix = the 
center of the image is 
more important
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0.1 0.2 0.1 0.1 0.1 0.1 0.1

Final accuracy is dependent on training images

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Training images are 
centered on the object 
we are trying to classify

This perceptron will work 
well for images that are 
centered on the object1

Will likely 
misclassify this 
image
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The bias indicates how likely the perceptron 
will classify the object as a cat

 If B is high, the perceptron will be less likely to classify an 
image as a cat because the summation part needs to 
have a higher value to meet the threshold

32

Output:

= 1 if ∑𝑁𝑁𝑖𝑖=1𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖 − 𝐵𝐵 > 0

= 0 otherwise 
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The bias is influenced by the ratio of cat vs 
non-cat images in the training set
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More cats in training images will likely result in a lower bias

Why? Because the perceptron will learn that the image it's 
shown is more likely to be a cat then not

Need to have balanced classes when training
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From perceptron to network

34
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0.1 0.2 0.1 0.1 0.1 0.1 0.1

Final accuracy is dependent on training images

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

Training images are 
centered on the object 
we are trying to classify

This perceptron will work 
well for images that are 
centered on the object1
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How do we improve the perceptron model to 
handle other images?

36
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Neural networks have connected layers of perceptrons

37
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Neural networks have connected layers of perceptrons
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Each layer "mixes" pixels/features from the previous layer

39

Blue lines indicate 
strongest weights
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The output layer allows different classifications

40

"Cat"

"Dog"
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Convolutional Neural Networks

41
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In a fully connected layer, every input is connected to 
the perceptrons in the next layer

42
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In a convolutional layer, only a patch of an 
image is used as input
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Each perceptron is called a "filter"
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The filter is moved over the entire image and 
the output is stored in a matrix

44

5 2-1

The process of sliding the filter over the entire 
image is called a convolution operation

This matrix is called a 
"feature map" or "activation 
map"
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Pooling is used to combine pixels in the feature 
maps (e.g., combine 2x2 pixels into 1) 

45
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Example: Edge detection (related method)

46
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Fully-connected networks vs Convolutional networks

47

0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.1 1 3 5 2 1 0.3

0.3 2 1 2 8 2 0.3

0.1 1 6 5 3 3 0.1

0.2 3 8 7 3 0.1

0.1 2 1 2 3 2 0.2

0.1 0.2 0.1 0.2 0.1 0.3 0.1

1

FCNs detect features based on 
position in an image

By sliding a filter around, a 
convolutional network detects 
features anywhere in an image
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Convolutional neural networks have several layers of 
convolutional layers

48
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Each convolutional layer combines features from the previous

49

Layer 1
Detect lines and edges

Layer 2
Combine lines and 

edges to detect eyes, 
ears, noses

Layer 3
Combine eyes, ears, 
noses to detect faces
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Convolutional layer parameters

 Filter size – specified as [M, N] (usually square). Number 
of rows and columns for each filter

 Stride – step size for traversing the input (usually 1, 1)

50
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Stride of [1, 1]
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Stride if [2, 2]
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Reference
 MIT 6.S191: Convolutional Neural Networks (Alex Amini) 

[Youtube]

53

https://www.youtube.com/watch?v=AjtX1N_VT9E&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=3
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Training a convolutional network in MATLAB to 
classify images of food

54
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What we'll do for this lab

 Load image data into MATLAB using an imageDatastore
 Use the DeepNetworkDesigner to build a simple network
 Train the network
 Test that it works

55
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For this example, delete *_salad and sashimi 
folders to reduce number of classes to train 

56
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Download the training data
fprintf("Downloading Example Food Image data set (77 
MB)... ")
filename = 
matlab.internal.examples.downloadSupportFile('nnet', 
...

'data/ExampleFoodImageDataset.zip');
fprintf("Done.\n")

filepath = fileparts(filename);
dataFolder = 
fullfile(filepath,'ExampleFoodImageDataset');
unzip(filename,dataFolder);

57
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Load the training data

 We are going to use a dataset of images of food

 MATLAB has done all the hard work of preparing the data 
for us

58



MCDB 4110/6440 (Fall 2021)

Folder structure of image data
 The folder ExampleFoodImageDataset (created when you unzipped 

the files) contains 9 folders
 The folders are named with a label that describes each image within it

59
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Load the images into an imageDatastore

imds = imageDatastore(dataFolder, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');

60
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The imageDatastore

 Last week, we talked about how we cannot simply load an 
entire dataset into memory due to RAM

 The imageDatastore object will index all the images in a 
directory and load them into memory when they are 
needed

61
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Display some images from the datastore

figure;
perm = randperm(976,20);
for i = 1:20

subplot(4,5,i);
imshow(imds.Files{perm(i)});

end

62
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Open the Deep Network Designer

>> deepNetworkDesigner

When the designer app opens, select Blank Network

63
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Create this network by 
dragging layers from the 
Layer Library panel

Connect them by dragging 
the output of a layer to the 
input of the next

Note: MATLAB resizes 
images to match the input 
size (227x227 pixels)

64

Set InputSize 227, 227, 3

Set OutputSize 9
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Import the training images to the designer
 Click on the Data tab
 Click on Import Data > Import Image Data

65
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Set up the training parameters
 Click on the Training tab, then click Training Options

 Set the following parameters:
 InitialLearnRate = 0.001
 MaxEpochs = 5;
 MiniBatchSize = 16

 Click Train

 When training is complete, select Export Trained Network and 
Results

66
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Testing the trained network

67
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Classifying individual images

testImage = imread(imds.Files{1});
classify(trainedNetwork_1, testImage)

testImage = imread(imds.Files{540});
classify(trainedNetwork_1, testImage)

69
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Randomly select and display images
%Select 16 random images
imgIdxs = randperm(978, 16);

figure;
for ii = 1:numel(imgIdxs)

I = imread(imds.Files{imgIdxs(ii)});

%Resize I to match the input layer size
Ires = imresize(I, [227 227]);

classification = classify(trainedNetwork_1, Ires);

subplot(4, 4, ii);
imshow(I)
title(classification, 'Interpreter', 'none')    

end

70
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Saving the network

 To save the trained network, you can simply save the 
variable in the Workspace

>> save('savedNetwork.mat', ...
'trainedNetwork_1', 'trainInfoStruct_1')

72
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Speeding up training with transfer learning

73
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Transfer learning
uses a network that was previously trained 

and retrains it on a different dataset (as 
opposed to starting with random weights)

74
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Load a pretrained network

 In the Deep Network Designer, click on New

 Install AlexNet (if using for the first time)

 Close the dialog box and click on New again to refresh 
the list

 Select AlexNet

76
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Make the following modifications

 Replace (delete and drag new copies) the last three 
layers:
 Fully Connected Layer, 
 Softmax
 Classification layer

 Set the OutputSize of the fully connected layer to 9

 Train the network using the same options as before
77
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pizza hamburger pizza hamburger

pizza pizza
hamburger

pizza

pizza french_fries
pizza pizza

hamburger french_fries hamburger pizza
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For this lab (Part 1)
 Train a network to classify images of cells:
 BPAE (Bovine Pulmonary Arterial Endothelial) cells – single 

mammalian cells
 Mouse kidney - tissue
 E. coli – single bacteria cells

 Write code to prepare your own training data from these images

 More details in handout

80
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