MCDB 4110/6440 – Quantitative Microscopy Lab

Lab 4 – 1:

Introduction to deep learning image classification

Lecturer: Jian Wei Tay

Date: 8 November 2021

Introduction to Deep Learning

Artificial Intelligence

Algorithms which allow computers to mimic human behavior

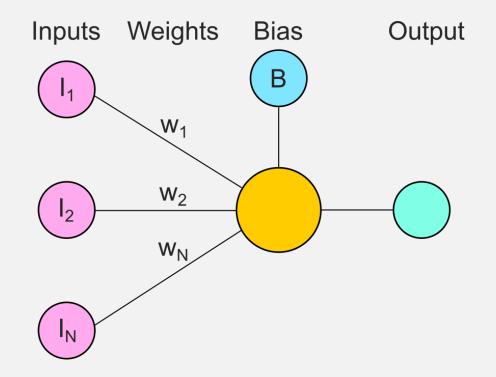
Machine Learning

Algorithms which allow a computer to learn without being explicitly programmed

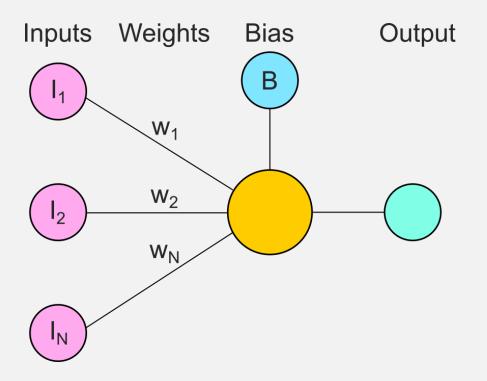
Deep Learning

Algorithms which use neural networks to extract patterns

The perceptron



The perceptron



Output =
$$\sum_{N}^{i=1} w_i I_i - B$$

Activation function

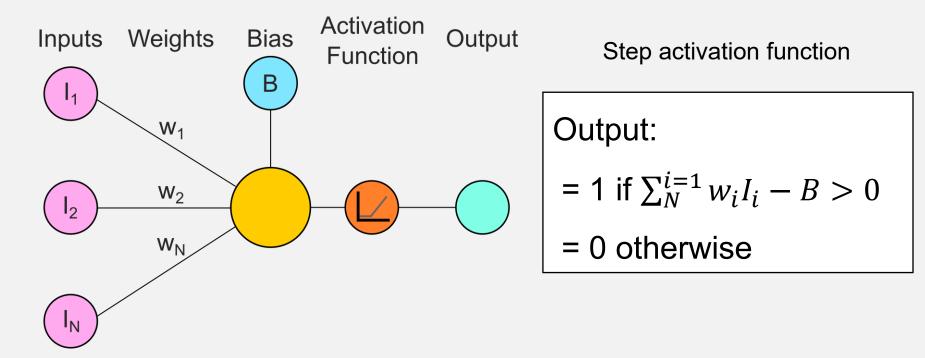
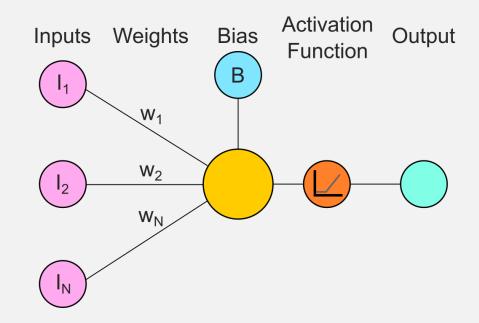
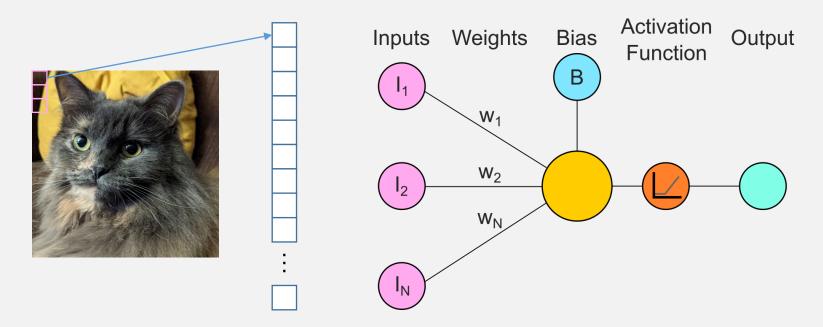


Image classification: Is this a cat?

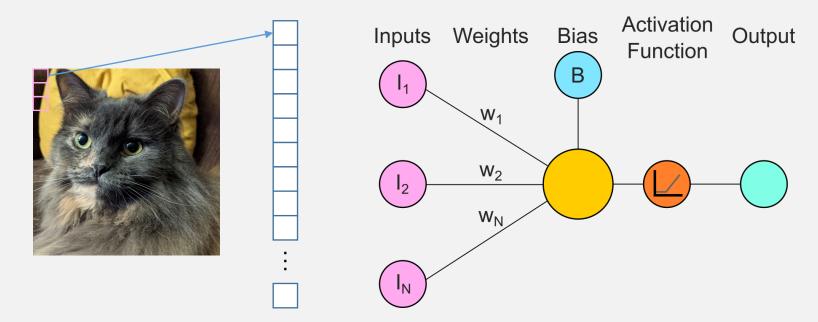


Each input = a pixel in the image

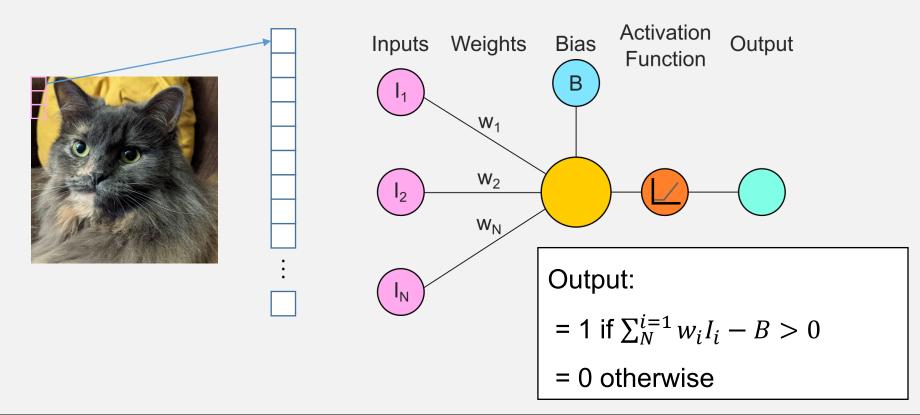


"Linearizing" or "flattening" the image = reshaping the 2D image matrix into a (column) vector

The output should be binary (1 = yes, 0 = no)



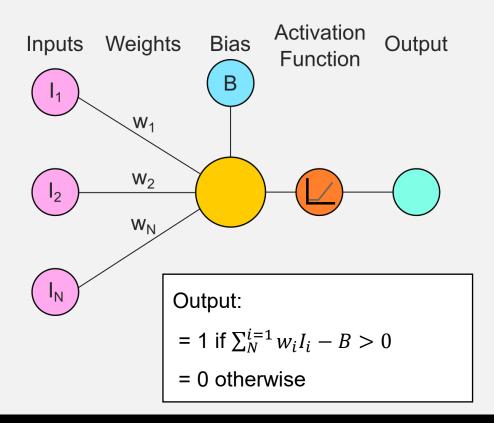
The output should be binary (1 = yes, 0 = no)



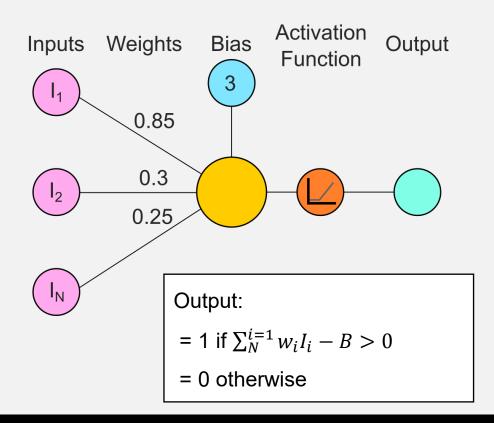
Training a deep learning network

is the process of finding the weights and bias which gives you the correct output

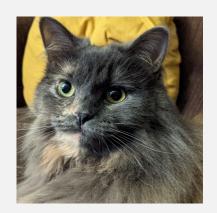
Initial weights and bias are randomized

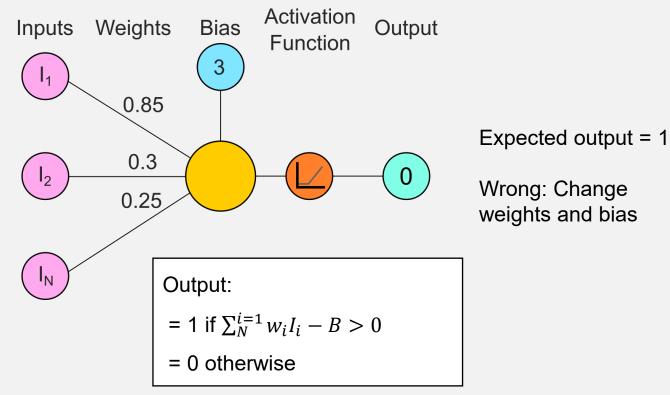


Initial weights and bias are randomized

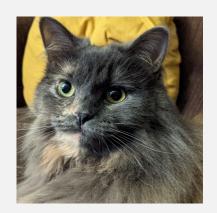


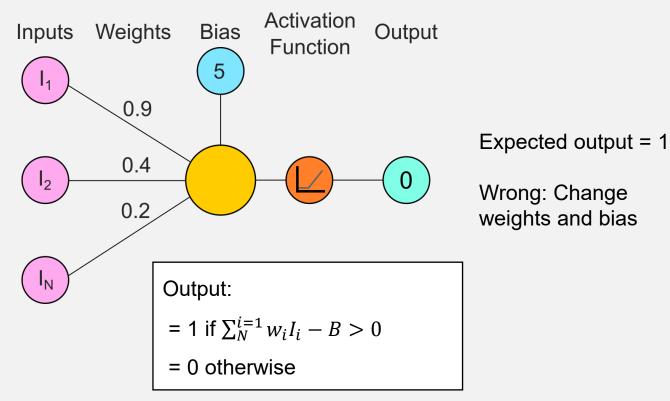
First training picture



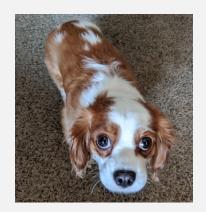


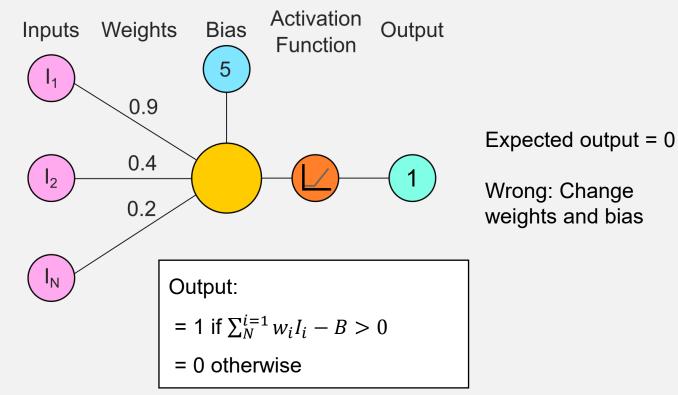
First training picture



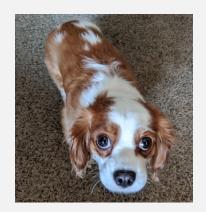


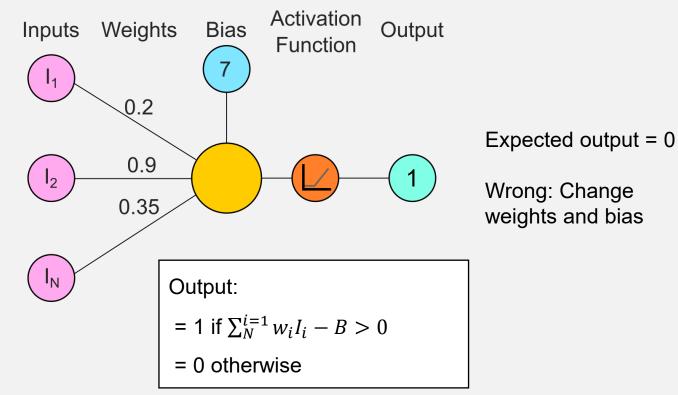
Second training picture



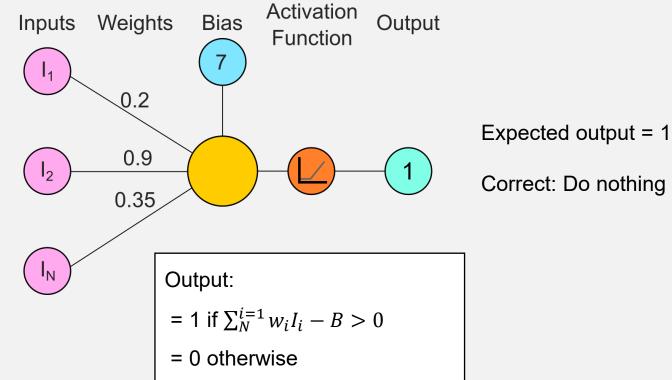


Second training picture

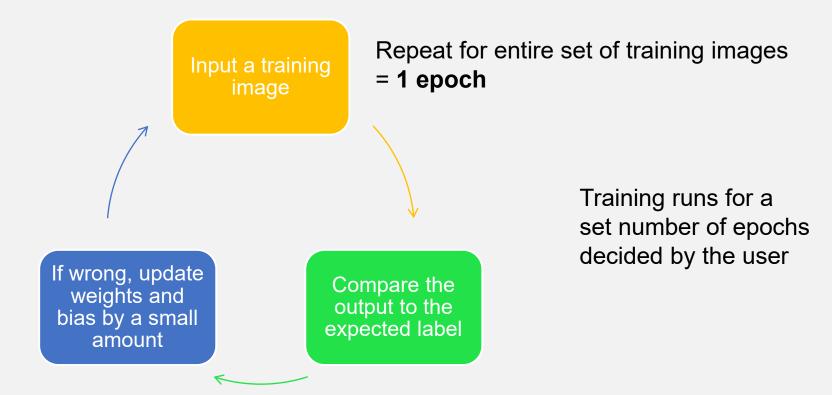




Third training picture



A typical training cycle

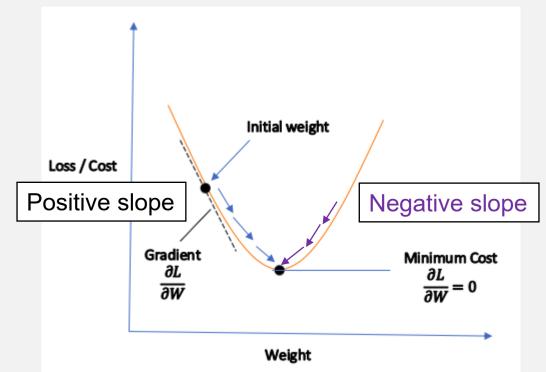


The Stochastic Gradient Descent with Momentum (SGDM) training algorithm

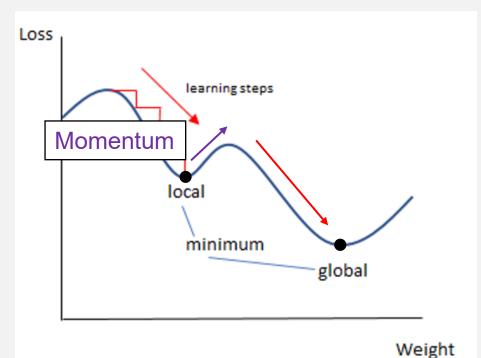
The goal of any training algorithm is to minimize error (aka loss/cost)

Error = | Output value – Expected value $|^2$

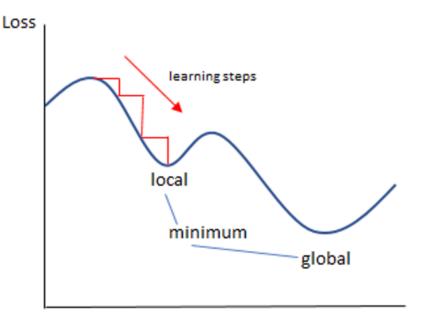
SGDM computes the derivative of the error, then changes the weights based on this slope



Momentum helps to avoid being stuck in a local minimum



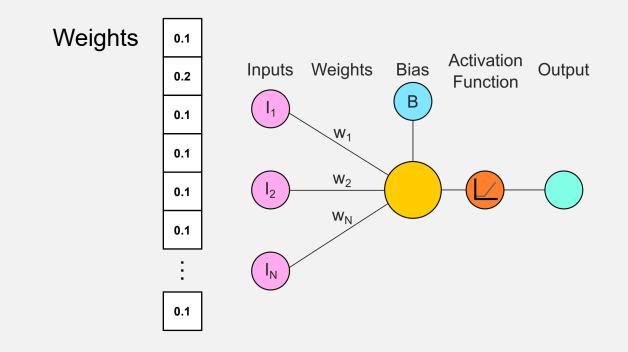
Typically want to reduce the size of learning steps as time goes on to help the network settle at the minima



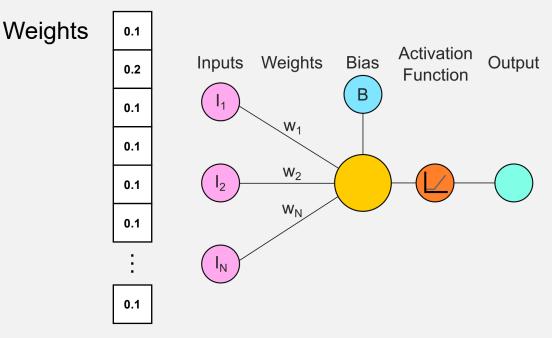
Parameters for SGDM

- Learning Rate How big a step to change the weights when output is wrong
- Learning Rate Drop Factor Factor to reduce learning rate after each epoch

Understanding how the perceptron works after training



The weights indicate how important an input is in getting the classification correct



Reshape weights into a matrix for visualization

0.1	0.2	0.1	0.1	0.1	0.1	0.1
0.1	1	3	5	2	1	0.3
0.3	2	1	2	8	2	0.3
0.1	1	6	5	3	3	0.1
0.2	3	8	7	3	1	0.1
0.1	2	1	2	3	2	0.2
0.1	0.2	0.1	0.2	0.1	0.3	0.1

Weights are higher at the center of the matrix = the center of the image is more important

The weights indicate how important an input is in getting the classification correct

0.1	0.2	0.1	0.1	0.1	0.1	0.1
0.1	1	3	5	2	1	0.3
0.3	2	1	2	8	2	0.3
0.1	1	6	5	3	3	0.1
0.2	3	8	7	3	1	0.1
0.1	2	1	2	3	2	0.2
0.1	0.2	0.1	0.2	0.1	0.3	0.1

Weights are higher at the center of the matrix = the center of the image is more important

Final accuracy is dependent on training images

0.1	0.2	0.1	0.1	0.1	0.1	0.1
0.1	1	3	5	2	1	0.3
0.3	2	1	2	8	2	0.3
0.1	1	6	5	3	3	0.1
0.2	3	8	7	3	1	0.1
0.1	2	1	2	3	2	0.2
0.1	0.2	0.1	0.2	0.1	0.3	0.1

Training images are centered on the object we are trying to classify

This perceptron will work well for images that are centered on the object

Will likely misclassify this image

The bias indicates how likely the perceptron will classify the object as a cat

Output: = 1 if $\sum_{N}^{i=1} w_i I_i - B > 0$ = 0 otherwise

 If B is high, the perceptron will be less likely to classify an image as a cat because the summation part needs to have a higher value to meet the threshold

The bias is influenced by the ratio of cat vs non-cat images in the training set

More cats in training images will likely result in a lower bias

Why? Because the perceptron will learn that the image it's shown is more likely to be a cat then not

Need to have **balanced classes** when training

From perceptron to network

Final accuracy is dependent on training images

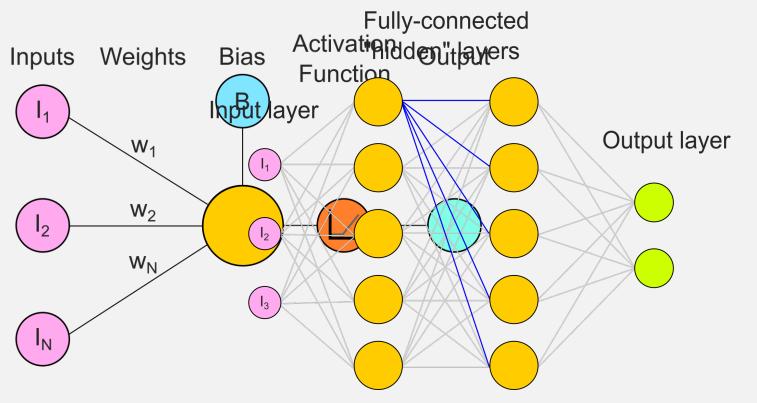
0.1	0.2	0.1	0.1	0.1	0.1	0.1
0.1	1	3	5	2	1	0.3
0.3	2	1	2	8	2	0.3
0.1	1	6	5	3	3	0.1
0.2	3	8	7	3	1	0.1
0.1	2	1	2	3	2	0.2
0.1	0.2	0.1	0.2	0.1	0.3	0.1

Training images are centered on the object we are trying to classify

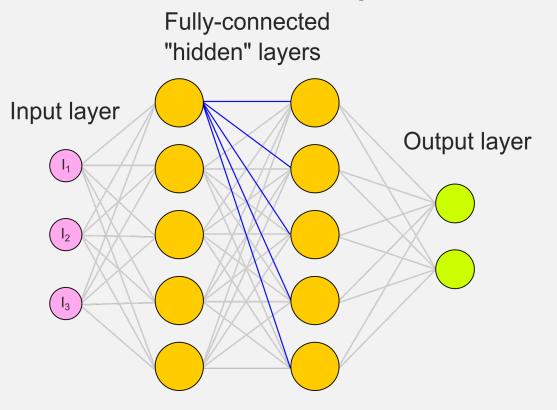
This perceptron will work well for images that are centered on the object

How do we improve the perceptron model to handle other images?

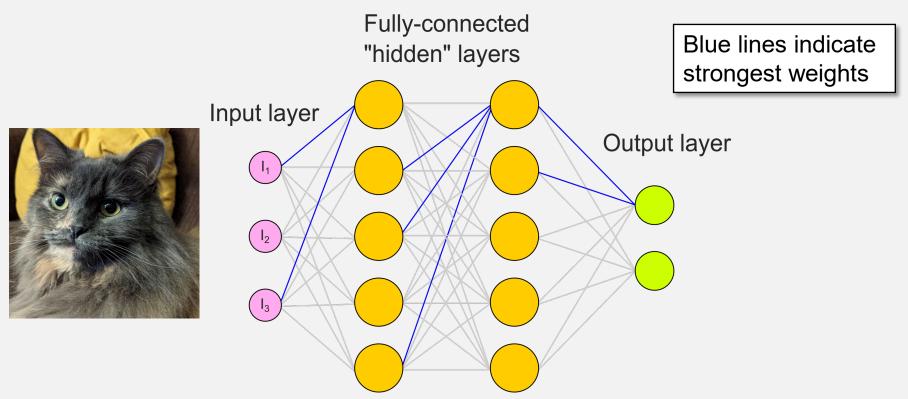
Neural networks have connected layers of perceptrons



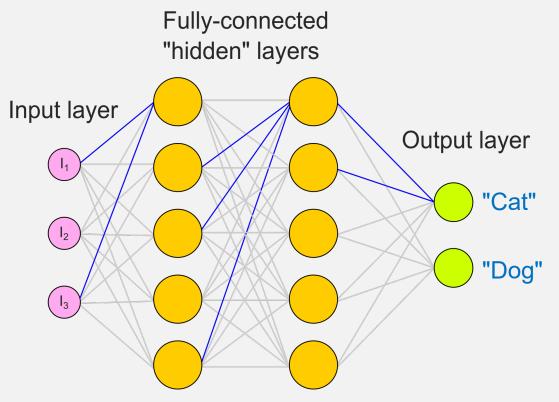
Neural networks have connected layers of perceptrons



Each layer "mixes" pixels/features from the previous layer

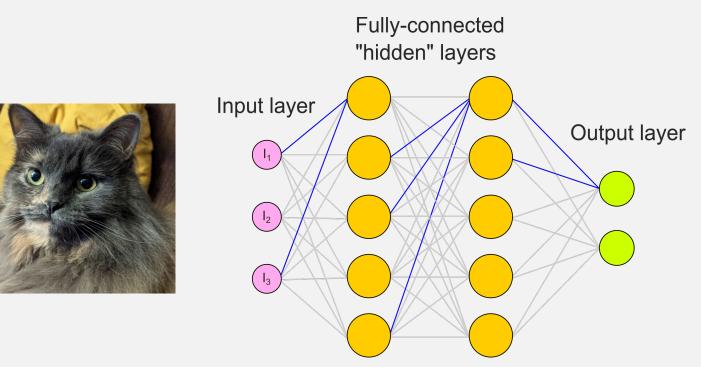


The output layer allows different classifications

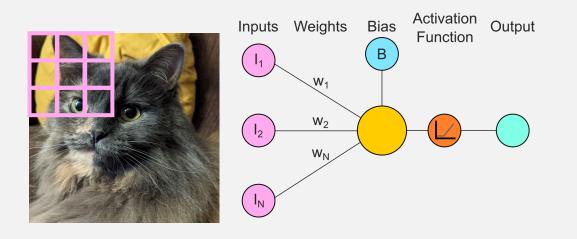


Convolutional Neural Networks

In a fully connected layer, every input is connected to the perceptrons in the next layer

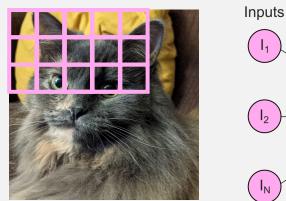


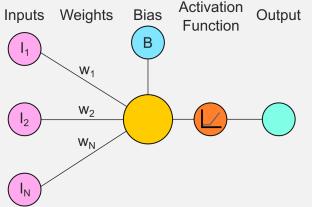
In a convolutional layer, only a patch of an image is used as input

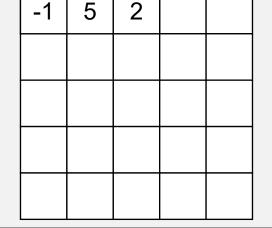


Each perceptron is called a "filter"

The filter is moved over the entire image and the output is stored in a matrix



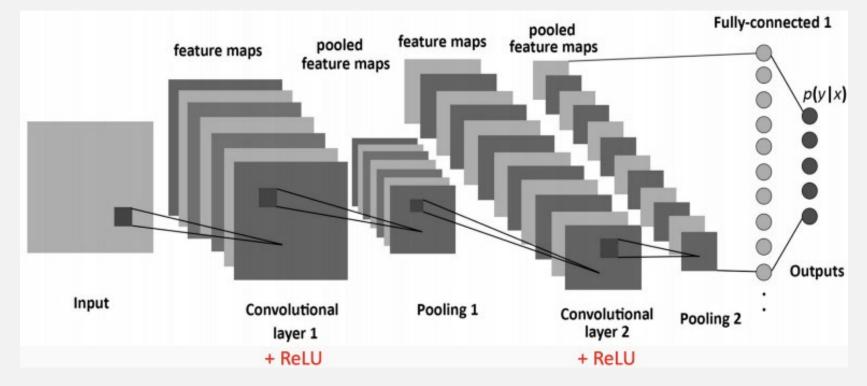




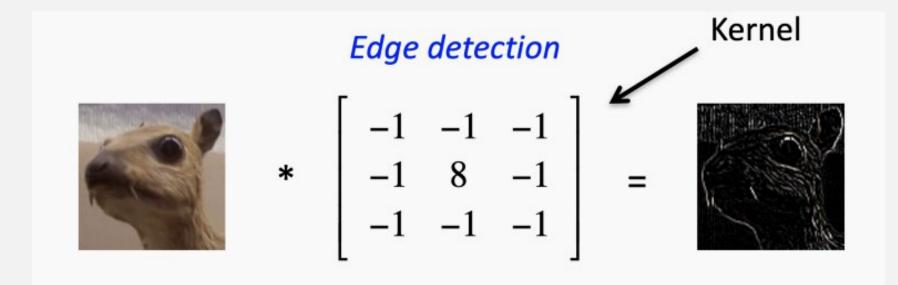
This matrix is called a "feature map" or "activation map"

The process of sliding the filter over the entire image is called a convolution operation

Pooling is used to combine pixels in the feature maps (e.g., combine 2x2 pixels into 1)



Example: Edge detection (related method)

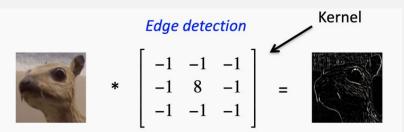


Fully-connected networks vs Convolutional networks

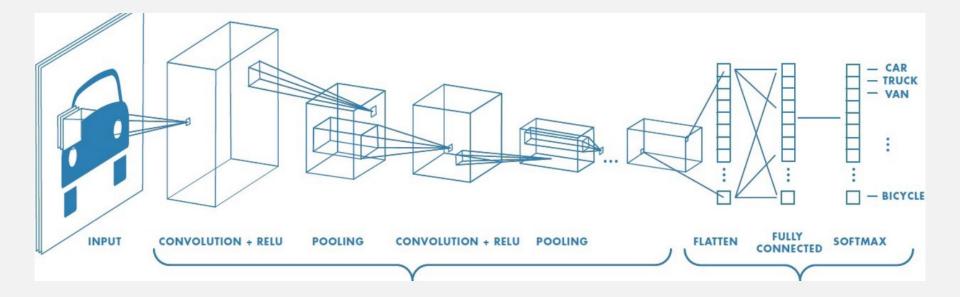
FCNs detect features based on position in an image

0.1	0.2	0.1	0.1	0.1	0.1	0.1
0.1	1	3	5	2	1	0.3
0.3	2	1	2	8	2	0.3
0.1	1	6	5	3	3	0.1
0.2	3	8	7	3	1	0.1
0.1	2	1	2	3	2	0.2
0.1	0.2	0.1	0.2	0.1	0.3	0.1

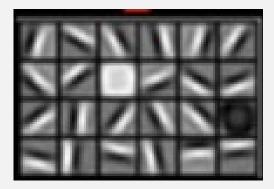
By sliding a filter around, a convolutional network detects features <u>anywhere</u> in an image

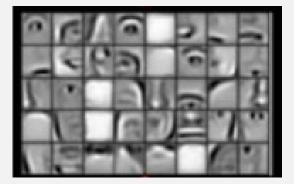


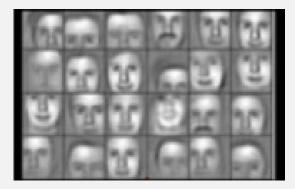
Convolutional neural networks have several layers of convolutional layers



Each convolutional layer combines features from the previous







Layer 1 Detect lines and edges Layer 2 Combine lines and edges to detect eyes, ears, noses

Layer 3 Combine eyes, ears, noses to detect faces

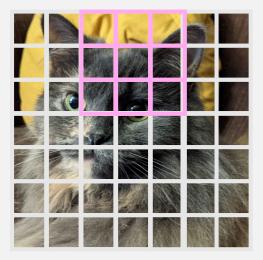
Convolutional layer parameters

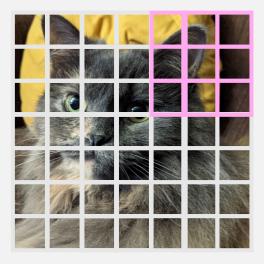
 Filter size – specified as [M, N] (usually square). Number of rows and columns for each filter

• Stride – step size for traversing the input (usually 1, 1)

Stride of [1, 1]

Stride if [2, 2]





Reference

 MIT 6.S191: Convolutional Neural Networks (Alex Amini) [<u>Youtube</u>]

Training a convolutional network in MATLAB to classify images of food

What we'll do for this lab

- Load image data into MATLAB using an imageDatastore
- Use the DeepNetworkDesigner to build a simple network
- Train the network
- Test that it works

For this example, delete *_salad and sashimi folders to reduce number of classes to train

Download the training data

```
fprintf("Downloading Example Food Image data set (77
MB)...")
filename =
matlab.internal.examples.downloadSupportFile('nnet',
. . .
    'data/ExampleFoodImageDataset.zip');
fprintf("Done.\n")
filepath = fileparts(filename);
dataFolder =
fullfile(filepath, 'ExampleFoodImageDataset');
unzip(filename,dataFolder);
```

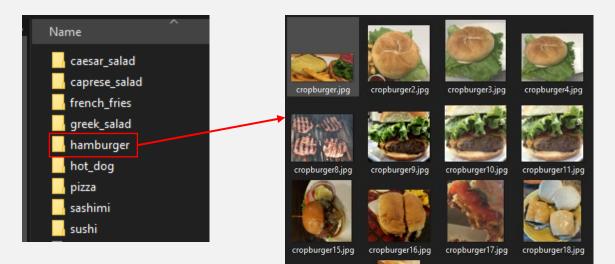
Load the training data

We are going to use a dataset of images of food

 MATLAB has done all the hard work of preparing the data for us

Folder structure of image data

- The folder ExampleFoodImageDataset (created when you unzipped the files) contains 9 folders
- The folders are named with a label that describes each image within it



Load the images into an imageDatastore

- imds = imageDatastore(dataFolder, ...
 - 'IncludeSubfolders', true, ...
 - 'LabelSource','foldernames');

The imageDatastore

- Last week, we talked about how we cannot simply load an entire dataset into memory due to RAM
- The imageDatastore object will index all the images in a directory and load them into memory when they are needed

Display some images from the datastore

figure;

```
perm = randperm(976,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
```

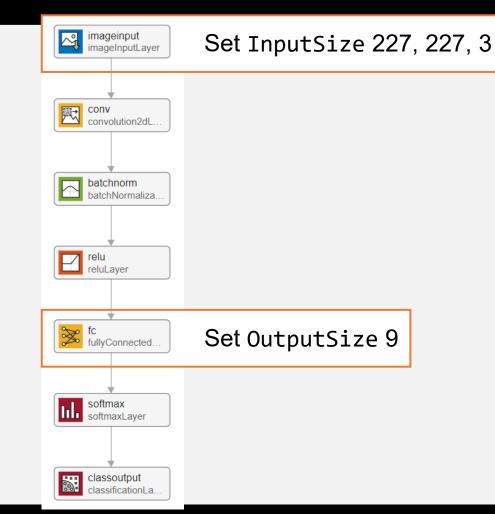
end

Open the Deep Network Designer

>> deepNetworkDesigner

When the designer app opens, select **Blank Network**

📣 Deep Network Designer Start Page					
$MATLAB^{\circ}$ Deep Network Designer					
Getting Started Compare Pretrained Networks Transfer Learning					
✓ General					
New					
Blank Network	From Workspace				



Create this network by dragging layers from the Layer Library panel

Connect them by dragging the output of a layer to the input of the next

Note: MATLAB resizes images to match the input size (227x227 pixels)

Import the training images to the designer

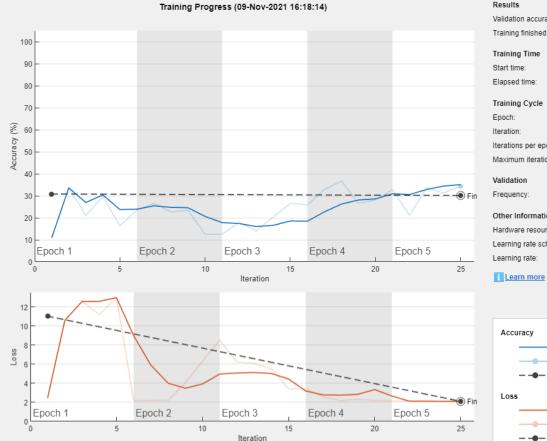
- Click on the Data tab
- Click on Import Data > Import Image Data

TRAINING	VALIDATION
Import image classification data for training.	Import validation data to help prevent overfitting.
Data source: ImageDatastore in workspace 🔻	Data source: Split from training data
(imds - 873 images Refresh	Specify amount of training data to use for validation.
AUGMENTATION OPTIONS	Percentage: 20 🜩 🗹 Randomize
Random reflection axis X: Y:	
Random rotation (degrees) Min: 0 + Max: 0 +	
Random rescaling Min: 1 → Max: 1 →	
Random horizontal translation (pixels) Min: 0 + Max: 0 +	
Random vertical translation (pixels) Min: 0 + Max: 0 +	
i Images will be resized during training to match network input size.	Import Cancel

Set up the training parameters

- Click on the **Training** tab, then click **Training Options**
- Set the following parameters:
 - InitialLearnRate = 0.001
 - MaxEpochs = 5;
 - MiniBatchSize = 16
- Click Train
- When training is complete, select Export Trained Network and Results

Testing the trained network



Classifying individual images

testImage = imread(imds.Files{1}); classify(trainedNetwork_1, testImage)

testImage = imread(imds.Files{540}); classify(trainedNetwork_1, testImage)

Randomly select and display images

```
%Select 16 random images
imgIdxs = randperm(978, 16);
```

```
figure;
for ii = 1:numel(imgIdxs)
```

```
I = imread(imds.Files{imgIdxs(ii)});
```

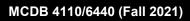
```
%Resize I to match the input layer size
Ires = imresize(I, [227 227]);
```

```
classification = classify(trainedNetwork_1, Ires);
```

```
subplot(4, 4, ii);
imshow(I)
title(classification, 'Interpreter', 'none')
```


pizza

pizza



Saving the network

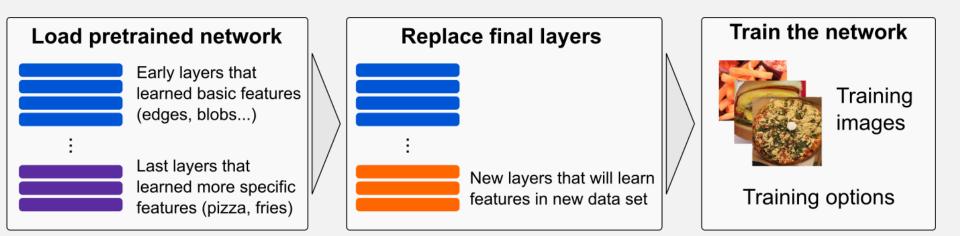
 To save the trained network, you can simply save the variable in the Workspace

>> save('savedNetwork.mat', ...
'trainedNetwork_1', 'trainInfoStruct_1')

Speeding up training with transfer learning

Transfer learning

uses a network that was previously trained and retrains it on a different dataset (as opposed to starting with random weights)



MCDB/BCHM 4312 & 5312 (Fall 2021)

Load a pretrained network

In the Deep Network Designer, click on New

Install AlexNet (if using for the first time)

 Close the dialog box and click on New again to refresh the list

Select AlexNet

Make the following modifications

- Replace (delete and drag new copies) the last three layers:
 - Fully Connected Layer,
 - Softmax
 - Classification layer
- Set the OutputSize of the fully connected layer to 9

Train the network using the same options as before

Results

ation accuracy:	83.43%
ing finished:	Reached final iteration
ning Time	
5	
time:	09-Nov-2021 19:15:42
sed time:	55 sec
ning Cycle	
:h:	5 of 5
tion:	215 of 215
tions per epoch:	43
mum iterations:	215
lation	
uency:	50 iterations
er Information	
a momuton	
ware resource:	Single GPU
ning rate schedule:	Constant
ning rate:	0.001

MCDB 4110/6440 (Fall 2021)

pizza

pizza

pizza

pizza

hamburger

french_fries

hamburger

pizza

For this lab (Part 1)

- Train a network to classify images of cells:
 - BPAE (Bovine Pulmonary Arterial Endothelial) cells single mammalian cells
 - Mouse kidney tissue
 - E. coli single bacteria cells
- Write code to prepare your own training data from these images
- More details in handout