MCDB/BCHM 4100/6440 – Microscopy Labs

Lab 2:

Illumination Quality, Detector Sensitivity, and Refractive Index Mismatch

Lecturer: Jian Wei Tay

Date: 2021-09-13

Tips for analysis

- Using this image, determine what the detector response is
- In other words, you should determine the relationship between intensity and the grayscale value of the image

The structuring element

A **structuring element** is a small logical array containing a **shape** used to probe the image

The **center (or origin)** of the structuring element is the pixel that is being probed

The **shape** is defined by true pixels

Use strel to generate structuring elements

Examples:

- SE = strel('square', width)
- SE = strel('disk', radius)
- SE = strel('line', length, angle)

Look at documentation for all options

Note: You can also use a logical matrix as a structuring element

The output of strel is a structured array struct

 The mask that defines the structuring element is in the field Neighborhood

 You can (and should) plot this to see what the structuring element looks like

>> imshow(SE.Neighborhood)

Compound morphological operations

 Opening and closing are <u>compound</u> morphological operations because they use the erosion and dilation operations

Opening is erosion followed by dilation

Closing is dilation followed by erosion

M = imopen(BW, SE)

BW = Input mask SE = Structuring element

Practice

- Read in the image 'blobs.png'
- Open the image with a line structuring element, length of 5, angle 0 (horizontal line)

M = imopen(BW, SE)
SE = strel('line', length, angle)

Why use opening?

 Morphological opening removes foreground objects smaller than the structuring element

Lecture 20: Bradley's method/Morphological operations

Why use opening?

 Morphological opening is useful for smoothing the edges of segmented objects

Lecture 20: Bradley's method/Morphological operations

Why use opening?

 Morphological opening is useful for removing objects with a specific shape from an image

operations

MCDB/BCHM 4312 & 5312 (Fall 2021)

11

M = imclose(BW, SE)

BW = Input mask SE = Structuring element

Task

- Read in the image 'blobs.png'
- Close the image with a square structuring element, width of 10

M = imclose(BW, SE) SE = strel('square', width)

Why use closing?

 Morphological closing fills in holes smaller than the structuring element, while preserving the shape and size of other objects

Lecture 20: Bradley's method/Morphological operations

Tips for analysis

-																				_																			
																				τ																			. '
	2	2	2	-	-	-				0					-	0	0	-	2	-				:					2	2	2	2	2	2	2	0	-		
	2	2	2	-	-	-	2		1					0	-	2	2		2	-	2	2						-	2	2	0		2	2	2	2	2	-	
	2	2					1			1						0	0							۰.							2	с.	2	2				ς.	
	1	2	-	-	-		1							-	-		0	-	-	-	1			0		5		-		-				5					· ·
	2	3		-	-		1			1								-		-	1							-	2		2		0	2		3			
	-	-	-	-	-				•		•	•		-	-	-	-	-	-	-		1		•			•	-	-	-	-	-	-	-	-		•		•
	-	-	-	-	-	•			•					-	-	-	-	-	-	-				•	•		•	-	-	-	-	-	-	-	-			•	•
	-	-	-	-	-		•	•	•			•		-	-	-	-	-	-	-			•					-		-	-	-	-	-			•		•
	1	1	-	-	-				1	1					-	-	-	-	-	-	1	1				1	•		-			-	-	-					
	1	1	-	-	-	•			1					-	-	-	-	-	-	-						1		-		-	-	-	-	-			•		•
	-	-	-	-	-	•	•	•			•	•		-	-	-	-	-	-	-	•	•		•	•	•	•	-	-	-	-	-	-	-	-	-	•	•	•
	•	•	•		•	٠	•	•	'	•	•	•	•	•		•				-	•	•	•	•	•	'	•	•	٠	•	•	•	•	•		٠	•	•	•
	•	•			•	•	•	•	•	•	•	٠	•		-			-	•		•	•	•	•	•		•	•	•	•	•	•		•		•	•	٠	•
	•					•	•	•	•	•	•	•	•		-						•	٠	•	•	•	•	٠		•	•	•					•	٠	•	•
	•					•	•	•	•	•	٠	•	•		•						•	٠	•	•	•	•	•	•	•	•	•						٠	•	•
		٠				٠	٠	٠	٠	•	٠	٠	٠			•		-		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•				٠	•	٠	•
	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	-		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		٠	٠	٠	٠	•
	٠	٠	٠		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	-	٠		-	•	-	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠		٠	٠	٠	٠	٠	•
	٠	٠		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	-	٠	٠	-	•	-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		٠	٠	٠	۰.
•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	-	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	-	•	٠		٠	٠	٠	• •
	٠	٠	٠	-	•	٠	٠	٠	٠	٠	٠	٠	٠	•	-	•	•	-	•	-	٠	٠	٠	٠	٠	٠	٠	٠	•	-	٠	•	-	٠	٠	٠	٠	٠	•
	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
	•	٠	•	-	•	٠	٠	٠	٠	٠	٠	٠	٠	•	-	٠	٠	-	•	-	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	•	-	٠		٠	٠	٠	•
	-	•	•	-	-	٠	٠	٠	٠	٠	٠	•	٠	•	-	•	•	-	٠	-	٠	٠	٠	٠	٠	٠	٠	•	•	-	•	-	-	•	•	٠	٠	٠	•
	•	•		-	-	٠		٠	٠	٠	•	٠			-	-		-	•	-	٠	٠	٠	٠	٠		٠	-			-	-		•		٠	٠	٠	
	-	•	-	-	-	•	٠		•		٠	٠		-	-		-	-	•	-	٠	٠		٠	٠	•	٠	•	•	•	•	-	-	-		•	٠	٠	•
	•	•	-	-	-				•						-		-	-		-				•						-		-	-	-			٠		
	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠		-	٠		-			٠	٠	٠	٠	٠	٠	٠		٠		٠					٠	٠	٠	
	۰	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠			٠					٠	٠	٠	٠	٠	٠	٠		٠		٠				٠	٠	٠	٠	
	٠	۰	٠			٠	٠	٠	٠	٠	٠	٠	٠						٠		٠	٠	٠		٠	٠	٠		٠		٠			٠		٠	٠	٠	
	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠			٠			٠		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠	٠	٠	
	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠		٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	•
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠		٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠	
	٠		٠			٠	٠	٠	٠	٠	٠	٠	٠	٠		٠			٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠	•
	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
	-			-		٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	-		-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	•		٠	٠	٠	
	٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	-	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠		٠	٠	٠	٠
	-						٠	٠	٠	٠	٠	٠	٠			٠	٠		٠	-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	
L.																				-																			-

- This pattern should be of uniformly fluorescent objects
- Using this image, determine the spatial distribution of the excitation light along camera
- One suggestion is to fit the pattern to a 2D surface

Steps for 2-D curve fitting

- 1. Locate and measure the average intensity for each dot
- 2. Define the 2D model using fittype
- 3. Fit the curve using fit

Note: You should be able to carry out step 1 already

2D Gaussian equation

$$z = A \exp\left(-\frac{(x-B)^2 + (y-C)^2}{2D^2}\right)$$

- A = amplitude
- B = x-offset
- C = y-offset
- D = width (related to the FWHM)

Define a custom fitting model using fittype

model = fittype(expression, name, values)

- expression is a string of the model equation
- You might need a couple of additional arguments:
 - 'dependent' string that specifies the dependent (output) variable name
 - 'independent' string that specifies the independent (input) variables

2D Gaussian equation

$$z = A \exp\left(-\frac{(x-B)^2 + (y-C)^2}{2D^2}\right)$$

- In this equation:
 - z is the dependent variable
 - x and y are the independent variables

Work with a partner to write the command that declares this model

Using fit to fit to a surface

 x and y need to be column vectors specifying the x- and y- coordinates of the measured data (i.e., intensity of the spots)

Adding an initial guess

curve = fit([X, Y], Z, 'StartPoint', p0);

p0 is a matrix with an initial guess for each coefficient. For our model, p0 = [A B C D].

Making a guess that is close to the actual values will improve accuracy of the fit.

You only need to do this if the fitting is poor.