
Localizing Single Particles and STORM
MCDB/BCHM 4312/5312

Please download

hw9_STORMdata.tif

and

hw9_example.m

2

Learning Goals

• Finding approximate locations of single particles
• Difference of Gaussians filter
• Extended maxima filter

• Sub-pixel localization by 2D curve-fitting (surface fitting)

• Single molecule localization microscopy - STORM

3

Quick recap on STORM

• STORM = STochastic Optical Reconstruction Microscopy

• An imaging technique with a resolution that goes below the

standard diffraction limit of light (i.e. below the width of the PSF)

4

Imaging small objects

http://www.microscopy-uk.org.uk

What is the imaged size of a 50 nm
object, imaged using an objective lens
with a point spread function width of
100 nm?

A. 25 nm

B. 50 nm

C. 100 nm

D. 200 nm

https://www.edmundoptics.com/resources/application-notes/imaging/limitations-on-
resolution-and-contrast-the-airy-disk/

Image is the convolution of the object intensity with the
objective point spread function (PSF)

PSF
(Point Spread Function)

or Airy disk

= OBJECT PSF

6

Gaussian function approximates an Airy disk

https://www.researchgate.net/figure/Point-spread-function-and-resolution-a-Airy-pattern-representing-
the-2D-transverse_fig9_323835351

Why use a Gaussian?

• The Airy disk equation is
computationally difficult to fit
because it has Bessel functions
which are complex

• The Gaussian equation is a
good estimate of the central
peak of the Airy disk (within a
few %)

7

Quick recap on STORM

• STORM = STochastic Optical Reconstruction Microscopy

• An imaging technique with a resolution that goes below the

standard diffraction limit of light (i.e. below the width of the PSF)

• Basic principle is single molecule localization – i.e. if there was

only a single fluorescent particle, you could fit a Gaussian to get

its location at a resolution below a single pixel

8

9http://sustainable-nano.com/2013/11/07/zooming-in-on-the-nano-world-
limitations-and-breakthroughs-in-light-microscopy/

Optical imaging Computational
reconstruction

1D Gaussian equation

A = amplitude (maximum value of y)

B = x-offset (position along the x-axis the

maximum y occurs)

C = width (related to the FWHM)

10

11

A = 5

B = 5

C = 3

C related to the FWHM

C is also related to σ
or the standard
deviation

2D Gaussian equation

A = amplitude

B = x-offset

C = y-offset

D = width (related to the FWHM)

12

Drawing a 2D Gaussian (or any 2D surface)

1. Define x- and y- grid

For this example, generate a vector from -10 to 10, with 1000 steps

xx = linspace(-10, 10, 1000);
yy = linspace(-10, 10, 1000);

[xx, yy] = meshgrid(xx, yy);

Compute the grid matrix (makes the next step more efficient)

13

meshgrid calculates matrices of coordinates

x = 1:3;

y = 1:5;
[X,Y] = meshgrid(x,y)

Y = 5×3

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

X = 5×3

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

We are working in pixels here, but x and y could be converted to
real units

14

Drawing a 2D Gaussian

1. Define x- and y- grid

2. Generate the z-data (i.e. evaluate the 2D Gaussian function as a
matrix operation)

A = 5; B = C = 1; D = 3

zz = 5 * exp (-((xx - 1).^2 + ...

(yy - 1).^2) / (2 * 3^2));

15

Drawing a 2D Gaussian
1. Define the x- and y- grid

2. Generate the z-data (i.e. evaluate the 2D function as a matrix
operation)

3. Display the image

pcolor(xx, yy, zz)

shading interp

axis image

Use these commands when to plot an image to scale

16

17

Analyzing STORM images

1. Detect approximate particle positions

2. Crop the image to get a sub-image containing only the particle

3. Fit the sub-image to the 2D Gaussian equation to get its position
(particle localization)

4. Reconstruct the image by drawing at the particle positions at a
higher resolution (smaller grid spacing)

18

Read in the first frame of the STORM data set

Please start a new script

I = imread('hw9_STORMdata.tif')

Info about image:

• 5 – 8 particles

• No noise and no
background

• A small border has been
added around the image
to help with indexing the
sub-images

19

Detecting the approximate position of particles using
the regional maxima transform

BW = imregionalmax(I)

imregionalmax identifies regional maxima in the
grayscale image

Input
Output (logical array)

Local search
region

20

Image I Regional maxima mask BW

21

Finding the row and column of true pixels

[row, col] = find(BW)

find returns the row and column indices of true elements in the
logical array BW

row and col are the approximate locations of the particles. We will
use curve-fitting to get a more accurate position

How many particles were found?

numParticles = numel(row)

22

Indexing a sub-image of the bead

• How to index a 5x5 sub-matrix from the image I around the first
particle?

Icrop = I((row(1)-2):(row(1)+2), (col(1)-2):(col(1)+2))

• Why index the sub-image?

Fitting is more accurate as it is not affected by the error from the
rest of the image – could lead to wrong estimates

23

Defining a fitting model

• MATLAB does not have a built-in model for a 2D Gaussian so we
have to define one

gauss2Dmodel = ...

fittype('A * exp(-((xx - B).^2 + (yy - C).^2) /

(2*D.^2))', 'independent', {'xx', 'yy'});

xx and yy are independent variables, i.e. will not be fit

fit function will search for A, B, C, and D

24

2D curvefitting or surface fitting

fitObj = fit([x, y], z, model)

x, y, and z are column vectors

What are x and y?

xdata = 1:5;

ydata = 1:5;
[xdata, ydata] = meshgrid(xdata, ydata);

What is z ?

The cropped image values (Icrop)

25

2D curvefitting or surface fitting

fitObj = fit([x, y], z, model)

How to convert a matrix into a column vector?
x(:)

fitObj = fit([xx(:), yy(:)], Icrop(:), gauss2Dmodel)

Check: You should get values for B and C between 2 - 4

26

Improve fitting by adding starting guess

What are good initial guesses for A, B, C, and D?

A = max(Icrop(:))
B = 3
C = 3
D = 2

27

Improve fitting by adding starting guess

fitObj = fit([xdata(:), ydata(:)], Icrop(:),...
gauss2Dmodel, ...

'StartPoint', [max(Icrop(:)), 3, 3, 2]);

• Check the fit again

28

What is the particle position?

x = fitObj.B

y = fitObj.C

WAIT! Remember we cropped the image, so we have to add an
offset back in

Icrop = I((row(1)-2):(row(1)+2), (col(1)-2):(col(1)+2))

Actual particle positions:

x = fitObj.B + col(1) - 2

y = fitObj.C + row(1) - 2

29

%Read in the image
I = imread('hw9_STORMdata.tif');

%Find approximate positions of the particle
BW = imregionalmax(I);
[row, col] = find(BW);

%Generate the x-data and y-data axes
xdata = 1:5;
ydata = 1:5;
[xdata, ydata] = meshgrid(xdata, ydata);

%Declare the 2D Gaussian surface model
gauss2Dmodel = fittype('A * exp(-((xx - B).^2 + (yy - C).^2) / (2*D.^2))',...

'independent', {'xx', 'yy'});

%Crop a 5x5 image around each particle
Icrop = double(I((row(1) - 2):(row(1) + 2), (col(1) - 2):(col(1) + 2)));

%Fit the surface - with a guess to the starting values
fitObj = fit([xdata(:), ydata(:)], Icrop(:), gauss2Dmodel, ...

'StartPoint', [max(Icrop, [], 'all'), 3, 3, 2]);

30

Modify the code to loop over all particles

%Read in the image
I = imread('hw9_STORMdata.tif');

%Find approximate positions of the particle
BW = imregionalmax(I);
[row, col] = find(BW);

%Generate the x-data and y-data axes
xdata = 1:5;
ydata = 1:5;
[xdata, ydata] = meshgrid(xdata, ydata);

%Declare the 2D Gaussian surface model
gauss2Dmodel = fittype('A * exp(-((xx - B).^2 + (yy - C).^2) / (2*D.^2))',...

'independent', {'xx', 'yy'});

for iP = 1:numel(row)

%Crop a 5x5 image around each particle
Icrop = double(I((row(iP) - 2):(row(iP) + 2), (col(iP) - 2):(col(iP) + 2)));

%Fit the surface - with a guess to the starting values
fitObj = fit([xdata(:), ydata(:)], Icrop(:), gauss2Dmodel, ...

'StartPoint', [max(Icrop, [], 'all'), 3, 3, 2]);

end

31

Modify the code to loop over all particles

numel(row) = number of objects

Remember to use the for loop index variable

for iP = 1:numel(row)

%Crop a 5x5 image around each particle
Icrop = double(I((row(iP) - 2):(row(iP) + 2), (col(iP) -

2):(col(iP) + 2)));

%Fit the surface - with a guess to the starting values
fitObj = fit...

end

32

Modify the code to save the fitted positions

%Initialize a matrix of NaNs (not-a-numbers) to store the position data
storePos = nan(16000, 2);
nP = 0; %Counter of number of found particles

for iP = 1:numel(row)

%Crop a 5x5 image around each particle
Icrop = double(I((row(iP) - 2):(row(iP) + 2), (col(iP) - 2):(col(iP) + 2)));

%Fit the surface - with a guess to the starting values
fitObj = fit([xdata(:), ydata(:)], Icrop(:), gauss2Dmodel, ...

'StartPoint', [max(Icrop, [], 'all'), 3, 3, 2]);

%Save the fitted positions (remember to correct for the offset since we
%cropped the image)
storePos(nP + 1, :) = [fitObj.B, fitObj.C] + [col(iP) - 2, row(iP) - 2];

%Increment the counter
nP = nP + 1;

end

%Remove the NaNs
storePos(all(isnan(storePos), 2), :) = [];

33

Code is available on Canvas:
hw9_example.m

Explanation in slides at end of
lecture notes

Reconstructing the final image

• To reconstruct the final image, draw at each localized particle
position

• This is similar to the last question in homework 7 (plotting
different Gaussians)

• A few different ways to draw STORM images:

• Draw crosses/circles at each particle location

• Bin the locations in a spatial histogram

• Draw Gaussians of fixed width

• Draw Gaussians with widths depending on localization accuracy (most

accurate, but can be difficult)

34

Reconstructing the final image

1. Convert the stored positions from pixels to microns. Original
image has steps of 0.1 µm (100x objective, 1.4 NA)

2. Since we have a model of the data, the final image can have
higher resolution (finer grid spacing) than the original image

• Draw the output image with a grid spacing of 0.001 µm

• Assume the localization accuracy is ~0.01 µm (roughly from the
confidence intervals after fitting)

• So output Gaussians should have A = 1, B and C from fit data,
and D = 0.01

35

Example drawing code

storePos = storePos * 0.1;

xxOut = 0:0.001:(size(I, 2) * 0.1);
yyOut = 0:0.001:(size(I, 1) * 0.1);
[xxOut, yyOut] = meshgrid(xxOut, yyOut);

imgOut = zeros(size(xxOut));

for iP = 1:size(storePos, 1)

imgOut = imgOut + ...
exp(- ((xxOut - storePos(iP, 1)).^2 + ...

(yyOut - storePos(iP, 2)).^2) / (2 * 0.01^2));

end

36

Convert the stored positions to microns

Define the grid in microns
Grid should have physical limits
from the original image

Initialize a matrix of zeros for
output image

Our friend, the 2D Gaussian equation

37

Example code from today is on Canvas

You will need to update the code to loop over every image in the STORM

dataset Add the loop BEFORE the drawing code

Advice for writing the code

• It is always a good idea to check if things are working on a small
subset of data before running the full code

• When developing your code to analyze the STORM dataset, start
with just the first image.

• Check that your code runs and the correct output image is
generated.

• Then check the first 30 frames.

• Run the whole code once everything looks like it is working (it took
my computer ~30 mins to process the whole dataset)

38

Localization accuracy

N = number of photons collected
s = sigma (C) of the Gaussian
a = size of the pixel
b = background noise

Precise nanometer localization analysis for individual
fluorescent probes. Thompson, Larson and Webb. Biophys.
J. 82 2775-2783 (2002).

If s >> b (i.e. no noise):

39

Localization accuracy

• Using Δx as the width of the Gaussian gives you an image of the
probability density of the object

• The probability density shows the likelihood that the object is
actually at the location specified

• The width of objects gives you the upper bound of what the actual
size is

40

Localizing Single Particles and STORM
MCDB/BCHM 4312/5312

42

The following slides are additional
reading/examples

Material marked optional will not be in exam

Storing data of known size from for loops

Example: Compute distance between the two bees

%Initialize a vector to store the data

dist_between_bees = zeros(1, 39);

for idx = 1:39

dist_between_bees(idx) = sqrt((beePos1(idx, 1) -

beePos2(idx, 1)).^2) % ... truncated

end

43

Storing data of UKNOWN ssize from for loops

If you do not know the size, you can grow the matrix (remove the
initialization step)

for idx = 1:39

dist_between_bees(idx) = sqrt((beePos1(idx, 1) -

beePos2(idx, 1)).^2) % ... truncated

end

44

Storing data of UKNOWN size from for loops

Better solution: make a larger matrix than you think you need and
remove the unassigned rows later

%Initialize a matrix of NaNs (not-a-number)
dist_between_bees = nan(1, 100);

for idx = 1:39

dist_between_bees(idx) = sqrt((beePos1(idx, 1) -

beePos2(idx, 1)).^2) % ... truncated

end

%Remove unassigned rows (they will be NaNs)

dist_between_bees(isnan(dist_between_bees)) = [];

45

Difference of Gaussians filter (Optional material)

• To compute the difference of Gaussians, perform a Gaussian blur
(imguassfilt) on the image twice

• The sigma of the first filter should be smaller than the sigma of
the second filter (i.e. the second filter should blur more)

• The TrackMate toolbox in ImageJ uses:

• The result from the second filter is subtracted from the result of
the first filter

• Threshold the resulting image (particles will be negative)

46

Note: σ2 > σ1

d = expected diameter of particle in pixels

• This website has a good description of the math:
• http://fourier.eng.hmc.edu/e161/lectures/gradient/node9.html

47

Difference of Gaussians filter (Optional material)

Example code

I = double(imread('hw9_STORMdata.tif'));

sigma1 = 1/(1 + sqrt(2)) * 10; %Assume diameter of 10 px
sigma2 = sqrt(2) * sigma1;

Igauss1 = imgaussfilt(I, sigma1);
Igauss2 = imgaussfilt(I, sigma2);

Idiff = Igauss2 - Igauss1;

mask = Idiff < -10;

imshowpair(I, mask)

48

Difference of Gaussians filter (Optional material)

Example output (green = image, magenta = mask)

49

