
Lecture 10: 
Analyzing videos and tracking bees
MCDB/BCHM 4312/5312



Download the file 

hw8_twobees.zip

and extract the image to your MATLAB 

folder



Learning objectives

• The nearest-neighbor algorithm

• Reading movies
• Multi-page TIFFs
• for loops

• Segmenting the bees
• L*a*b colorspace for segmenting objects by color

• if statement



Tracking bees



The tracking problem

We want to follow the same object through every frame of 
the movie

How do we know which object is which?



The nearest-neighbor algorithm

• Measure the distance of an object in a frame with every other 
object in the previous frame

• Link objects with the shortest distance (the nearest-neighbor) -
“connect the dots”

d1 < d2

Important assumption: The frame rate of the acquisition has to be slow 
enough that the objects do not move too much between frames



Distance between two points



What is the sequence of steps to track the bees in the 
movie?

1. Read a frame of the movie

2. Segment the bees (or the spot on 
the bees)

3. Measure the position of the bees

4. Track the bees using the nearest 
neighbor algorithm

5. Repeat for each frame



1. Read a frame of the movie

• Time-lapse images are commonly saved as multi-page TIFFs (or 
TIFF stack)

• A single TIF file that contains multiple images

Frames or "pages"



Reading multi-page TIFFs

To get number of images in a TIFF file, get the image file 
information:

info = imfinfo('hw8_twobees.tif');

numFrames = numel(info);

How many frames are in the movie 'hw8_twobees.tif'?



Reading in a specific image/page

Basic syntax:

I = imread('hw8_twobees.tif', page_num);

Example: Read in frame 5 and display it

I = imread('hw8_twobees.tif', 5);



What type of image is this?

a) RGB image

b) Grayscale image

c) Binary image

Remember: 

• RGB images are width by height by color

• To index the different color channels, use matrix notation e.g. 
green = I(:, :, 2)



2. Segment the bees

How to segment the bees?

1. You could convert the image to 
grayscale (e.g. using rgb2gray
or use an appropriate color 
channel), then intensity 
threshold the bees

2. Use color segmentation to 
identify the pink dot



Color spaces are specific ordering of colors

RGB color space
• Colors are defined by the 

coordinate (red, green, blue)
• 0  black, 1  white

(1, 0, 0) (0.5, 0, 0) (0.03, 0, 0)

(1, 1, 0) (1, 0, 1)

Values indicate intensity

Get different colors by mixing different 
amounts of red, green, and blue

Selecting similar colors is difficult

 Have to specify a cuboid (3D 
rectangle)

(0, 1, 1)



L*a*b color space

L = Luminosity (not shown on this 
plot)
L* = 0 black, L* = 100 white

a* - is the green-red component
-ve a* = green
+ve a* = red

b* - the blue-yellow component
-ve b* = blue
+ve b* = yellow

Color is specified by the a* and b* 
coordinate



L*a*b color space

• Similar colors are grouped around each other in a*-b* coordinates



Color segmentation in MATLAB

1. Pick the color of the tag on bee in RGB.

2. Convert the color into L*a*b* coordinates.

3. Convert the whole image into L*a*b* colorspace.

4. Select pixels in a circle centered on the a*b* coordinates from 2.



1. Get the color of the tag on bee

imshow(I)

Use data tip, get color

I chose [134, 69, 82] as the spot color



2. Convert RGB spot color to L*a*b* color

Convert the RGB color into a 1 x 1 x 3 matrix:

spotRGB = cat(3, 134, 69, 82);

For the function to work correctly, the spot color must be 
the same data type as the original image (uint8):

spotLab = rgb2lab(uint8(spotRGB))



3. Convert the whole image into L*a*b*

labImg = rgb2lab(I);

The order of the third dimension of labImg is L*, a* and b*

Index the a* and b* coordinates into new variables for 
convenience

aa = labImg(:, :, 2);
bb = labImg(:, :, 3);



4. Select pixels with similar colors 

(i.e. select a circle around the color we want)

mask = (aa - spotLab(2)).^2 + (bb - spotLab(3)).^2 <= 10^2;

a*, b* = Image

a*spot, b*spot = Color of spot

r = radius of circle (larger circle, 
more colors allowed)



I = imread('hw8_beemovie.tif', 5);

spotRGB = cat(3, 134, 69, 82);
spotLab = rgb2lab(uint8(spotRGB));

labImg = rgb2lab(I);
aa = labImg(:, :, 2);
bb = labImg(:, :, 3);

mask = (aa - spotLab(2)).^2 + ...
(bb - spotLab(3)).^2 <= 10^2;

mask = imopen(mask, strel('disk', 3));



3. Measure the position of the bees

How do we measure position using the mask?

data = regionprops(mask, 'Centroid')



5. Repeat for all frames using a loop

• For loops are useful for repeating sections of code

• Basic syntax:

for idx = 1:10

disp(idx)

end

Index variable Index values

Statement body
Repeated each loop

24



For loop

for idx = 1:10

disp(idx)

end

• During each loop:

• The index variable idx will change to the next value

• The statements in the body will be carried out

25

Loop 1: idx = 1

Loop 2: idx = 2

…

Loop 10: idx = 10



1. finfo = imfinfo('hw8_twobees.tif');

2. numFrames = numel(finfo);

3. spotColorRGB = cat(3, 134,69, 82);

4. spotColorLab = rgb2lab(uint8(spotColorRGB));

5. currImage = imread('hw8_twobees.tif', 5);

6. labImg = rgb2lab(currImage);

7. aa = labImg(:, :, 2);

8. bb = labImg(:, :, 3);

9. mask = (aa - spotColorLab(2)).^2 + (bb - spotColorLab(3)).^2 <= 20^2;

10. mask = imopen(mask, strel('disk', 3));

11. data = regionprops(mask, 'Centroid');

These values are 
constant so they 
should be 
outside the loop

Everything below this should be in a for loop



1. finfo = imfinfo('hw8_twobees.tif');

2. numFrames = numel(finfo);

3. spotColorRGB = cat(3, 134,69, 82);

4. spotColorLab = rgb2lab(uint8(spotColorRGB));

5. for idx = 1:numFrames

6. currImage = imread('hw8_twobees.tif', idx);

7. labImg = rgb2lab(currImage);

8. aa = labImg(:, :, 2);

9. bb = labImg(:, :, 3);

10. mask = (aa - spotColorLab(2)).^2 + ...
(bb - spotColorLab(3)).^2 <= 20^2;

11. data = regionprops(mask, 'Centroid');

12. end
Stylistic: Statements in loops are indented by 4 spaces (TAB)
Makes it easier to identify where the loops are



If statements

• if statements allow you to control the execution of code based on 
a logical condition

if A > 5

disp('Greater')

end

Logical condition

Statement body
Runs if the condition is
true



If statements

• if statements allow you to control the execution of code based on 
a logical condition

if A > 5
disp('Greater than 5')

elseif A == 5
disp('Equal to 5')

else
disp('Less than 5')

end

Use elseif to 
add additional 
conditions

else will run if no 
other condition 
was true
MUST BE LAST



4. Nearest neighbor tracking

• Measure the distance of an object in a frame with every other 
object in the next frame

• Connect objects with the shortest distance (the nearest-neighbor) 
- “connect the dots”



Setup: Define how you want to store the data

• Initialize two matrices to store the position of each bee outside the for loop:

posBee1 = zeros(numFrames, 2);

posBee2 = zeros(numFrames, 2);

• The columns are X and Y

• Each row is a new timepoint/frame

• You can of course define other ways to store the data – this is what I’m using for the 

example

X1 Y1

X2 Y2

… …

XN YN

posBee1 = 



Different functions to initialize a matrix

• zeros

• ones
• nan

nan = Not a Number

• A value used as a placeholder when you don't want to confuse it 
for real data e.g. if your real data also contains ones and zeros

32



if idx == 1
posBee1(1, :) = data(1).Centroid;
posBee2(1, :) = data(2).Centroid;

else
dist_to_bee1 = sqrt((posBee1(iT - 1, 1) - data(1).Centroid(1))^2 + ...

(posBee1(iT - 1, 2) - data(1).Centroid(2))^2);

dist_to_bee2 = sqrt((posBee2(iT - 1, 1) - data(1).Centroid(1))^2 + ...
(posBee2(iT - 1, 2) - data(1).Centroid(2))^2);

if dist_to_bee1 < dist_to_bee2
posBee1(iT, :) = data(1).Centroid;
posBee2(iT, :) = data(2).Centroid;

else
posBee1(iT, :) = data(2).Centroid;
posBee2(iT, :) = data(1).Centroid;

end
end

Summary of tracking code

For the first frame, can randomly assign
to initialize the data

Calculate the distance

Find the nearest neighbor

This example uses the fact that we
know there are only two bees

Otherwise, need to make sure we don't
count a bee twice



Summary

• How the nearest neighbor algorithm works conceptually
• Links objects in the current frame with the closest object in the previous 

frame
• Straight-line distance formula

• MATLAB concepts:
• Reading a multi-page TIFF
• for loops
• if statements
• Pre-allocating a matrix to store data
• Adding data to a matrix in the for loop



Homework

• Will be uploaded to Canvas after class – put the complete code 
together and make sure it works

• Please start! If you have questions:

jian.tay@colorado.edu

or 

Drop by JSCBB A325

• Try first, but please reach out sooner rather than later if you get 
stuck


