

Illuminating photosynthesis in single cyanobacterial cells

Jian Wei Tay^{1,*} and Jeffrey C. Cameron² *Email: jian.tay@colorado.edu ¹BioFrontiers Institute, University of Colorado Boulder, CO 80309 ²Renewable and Sustainable Energy Institute and Department of Biochemistry, University of Colorado Boulder, CO 80309

Motivation

BioFrontiers Inst

UNIVERSITY OF COLORADO B

Explanation of fluorescence

Compared to wild-type, the \triangle cpc mutant is to collect light but is also less susceptible to photodamage

Repair vesicles

Conclusions

- Photoinhibition can be induced without antibiotics
- Experiment and control strains can be grow simultaneously, increasing reproducibility
- Imaging revealed that some colonies exhibit asymmetric survival despite being genetic identical - new bet hedging mechanism?
- Important to understand how cells grow optimally in fluctuating light environments

Acknowledgements

Dr. Kristin Moore (CU Boulder): $\triangle cpc$ strain Dr. Nick Hill (CU Boulder): Segmentation code U.S. Department of Energy (DOE) DE-SC00193

titute oulder
e
less able
22h
wn bited
ally
S
306